计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (14): 1-19.DOI: 10.3778/j.issn.1002-8331.2412-0102

• 热点与综述 • 上一篇    下一篇

持续关系抽取方法研究综述

杭婷婷,郭亚,李德胜,冯钧   

  1. 1.安徽工业大学 计算机科学与技术学院,安徽 马鞍山 243032 
    2.河海大学 水利部水利大数据重点实验室,南京 211100
    3.河海大学 计算机与软件学院,南京 211100
  • 出版日期:2025-07-15 发布日期:2025-07-15

Survey on Research of Continual Relation Extraction Methods

HANG Tingting, GUO Ya, LI Desheng, FENG Jun   

  1. 1.College of Computer Science and Technology, Anhui University of Technology, Ma’anshan, Anhui 243032, China
    2.Key Laboratory of Water Big Data Technology of Ministry of Water Resources, Hohai University, Nanjing 211100, China
    3.College of Computer and Software, Hohai University, Nanjing 211100, China
  • Online:2025-07-15 Published:2025-07-15

摘要: 关系抽取旨在从文本数据中识别并提取实体之间的关系。随着数据流的动态变化,传统关系抽取模型在处理新出现的关系类型时,往往面临灵活性和有效性的双重挑战。持续关系抽取模型通过实时学习,不仅能够适应新关系类型的引入,还能有效保留已学到的知识,为知识图谱的动态更新与扩展提供了重要支持。系统综述了持续关系抽取领域的研究进展。阐述了持续关系抽取的发展历程、基本概念以及任务定义;从关系原型、对抗增强、对比学习及其他方法四个方面总结了当前的研究方法;介绍了常用的数据集与评价指标,并对主流模型的性能进行了对比评估。最后,分析了现有方法的局限性与挑战,并对未来的研究方向提出了展望。

关键词: 持续关系抽取, 记忆机制, 关系原型, 对抗增强, 对比学习

Abstract: Relation extraction (RE) focuses on identifying and extracting relations between entities from textual data. With the dynamic nature of data streams, traditional relation extraction models face challenges with flexibility and effectiveness when new relation types emerge. Continual relation extraction (CRE) models, through real-time learning, not only adapt to new relation types but also effectively retain previously learned knowledge, providing crucial support for the dynamic updating and expansion of knowledge graphs. This paper provides a systematic review of the research progress in the field of continual relation extraction. Firstly, it elaborates the development history, basic concepts, and task definitions of continual relation extraction. Next, it summarizes the current research methods from four perspectives: relation prototype, adversarial augmentation, contrastive learning, and other approaches. Subsequently, commonly used datasets and evaluation metrics are introduced, followed by a comparative performance evaluation of mainstream models. Finally, the limitations and challenges of existing methods are discussed, and future research directions are proposed.

Key words: continual relation extraction, memory mechanism, relation prototypes, adversarial augmentation, contrastive learning