[1] 秦川, 祝恒书, 庄福振, 等. 基于知识图谱的推荐系统研究综述[J]. 中国科学: 信息科学, 2020, 50(7): 937-956.
QIN C, ZHU H S, ZHUANG F Z, et al. A survey on knowledge graph-based recommender systems[J]. SCIENTIA SINICA Informationis, 2020, 50(7): 937-956.
[2] ZHANG F Z, YUAN N J, LIAN D F, et al. Collaborative knowledge base embedding for recommender systems[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 353-362.
[3] WANG H, ZHANG F, XIE X, et al. DKN: deep knowledge-aware network for news recommendation[C]//Proceedings of the World Wide Web Conference, 2018: 1835-1844.
[4] WANG H W, ZHANG F Z, ZHAO M, et al. Multi-task feature learning for knowledge graph enhanced recommendation[C]//Proceedings of the World Wide Web Conference. New York: ACM, 2019: 2000-2010.
[5] WANG X, WANG D X, XU C R, et al. Explainable reasoning over knowledge graphs for recommendation[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2019: 5329-5336.
[6] WANG H W, ZHANG F Z, WANG J L, et al. RippleNet: propagating user preferences on the knowledge graph for recommender systems[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York: ACM, 2018: 417-426.
[7] WANG H W, ZHAO M, XIE X, et al. Knowledge graph convolutional networks for recommender systems[C]//Proceedings of the World Wide Web Conference. New York: ACM, 2019: 3307-3313.
[8] WANG X, HE X N, CAO Y X, et al. KGAT: knowledge graph attention network for recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Know-ledge Discovery & Data Mining. New York: ACM, 2019: 950-958.
[9] WANG X, HUANG T L, WANG D X, et al. Learning intents behind interactions with knowledge graph for recommendation[C]//Proceedings of the Web Conference. New York: ACM, 2021: 878-887.
[10] CHEN M, WEI Z, HUANG Z, et al. Simple and deep graph convolutional networks[C]//Proceedings of the International Conference on Machine Learning, 2020: 1725-1735.
[11] ZOU D, WEI W, MAO X L, et al. Multi-level cross-view contrastive learning for knowledge-aware recommender system[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 1358-1368.
[12] 张明星, 张骁雄, 刘姗姗, 等. 利用知识图谱的推荐系统研究综述[J]. 计算机工程与应用, 2023, 59(4): 30-42.
ZHANG M X, ZHANG X X, LIU S S, et al. Review of recommendation systems using knowledge graph[J]. Computer Engineering and Applications, 2023, 59(4): 30-42.
[13] BORDES A, USUNIER N, GARCIA-DURAN A, et al. Translating embeddings for modeling multi-relational data[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems, 2013: 2787-2795.
[14] LIN Y K, LIU Z Y, SUN M S, et al. Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence, 2015: 2181-2187.
[15] JI G L, HE S Z, XU L H, et al. Knowledge graph embedding via dynamic mapping matrix[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2015: 687-696.
[16] NICKEL M, TRESP V, KRIEGEL H P. A three-way model for collective learning on multi-relational data[C]//Proceedings of the 28th International Conference on International Conference on Machine Learning, 2011: 809-816.
[17] YANG B, YIH W, HE X, et al. Embedding entities and relations for learning and inference in knowledge bases[J]. arXiv:1412.6575, 2014.
[18] JI S, PAN S, CAMBRIA E, et al. A survey on knowledge graphs: representation, acquisition, and applications[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(2): 494-514.
[19] WU J C, WANG X, FENG F L, et al. Self-supervised graph learning for recommendation[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 726-735.
[20] YANG Y H, HUANG C, XIA L H, et al. Knowledge graph contrastive learning for recommendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 1434-1443.
[21] ZHOU X, SHEN Z Q. A tale of two graphs: freezing and denoising graph structures for multimodal recommendation[C]//Proceedings of the 31st ACM International Conference on Multimedia. New York: ACM, 2023: 935-943.
[22] VELICKOVIC P, CUCURULL G, CASANOVA A, et al. Graph attention networks[J]. arXiv:1710.10903, 2017.
[23] YANG Y H, HUANG C, XIA L H, et al. Knowledge graph self-supervised rationalization for recommendation[C]//Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2023: 3046-3056.
[24] HE X N, DENG K, WANG X, et al. LightGCN: simplifying and powering graph convolution network for recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrie-val. New York: ACM, 2020: 639-648.
[25] CHEN T, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations[C]//Proceedings of the International Conference on Machine Learning, 2020: 1597-1607. |