计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (14): 20-36.DOI: 10.3778/j.issn.1002-8331.2409-0436

• 热点与综述 • 上一篇    下一篇

深度学习中结合哈密顿力学的神经网络研究进展

梁永琦,白双成,张志一   

  1. 内蒙古师范大学 计算机科学技术学院,呼和浩特 010022
  • 出版日期:2025-07-15 发布日期:2025-07-15

Advances in Neural Networks Combined with Hamiltonian Mechanics in Deep Learning

LIANG Yongqi, BAI Shuangcheng, ZHANG Zhiyi   

  1. School of Computer Science and Technology, Inner Mongolia Normal University, Hohhot 010022, China
  • Online:2025-07-15 Published:2025-07-15

摘要: 基于哈密顿力学的神经网络已经成为自然语言处理领域的一个重要研究方向,它不仅能够解决深度学习一直以来有关梯度消失的问题,同时也为研究人员提供一个探索神经网络的可解释性和解决当前深度学习困难问题的新思路。其利用经典力学原理,通过哈密顿函数更新网络状态,并借助能量守恒特性,有效提高模型准确率,并对解决深度学习中的梯度问题也做出了重要贡献。简要概述哈密顿力学引导深度学习的主要动机和理论基础;针对结合哈密顿力学的神经网络进行详细讨论,总结其特点、应用场景与局限性。最后,讨论分析哈密顿力学与神经网络的结合在自然语言处理领域中的问题与挑战,并对未来发展进行展望,为进一步的研究提供参考。

关键词: 哈密顿力学, 梯度消失, 神经网络, 自然语言处理

Abstract: Neural networks based on Hamiltonian mechanics have become an important research direction in the field of natural language processing, which can not only solve the problem of gradient disappearance in deep learning, but also provide a new way for researchers to explore the interpretibility of neural networks and solve the current difficult problems in deep learning. It utilizes the principles of classical mechanics, updates the network state through the Hamiltonian function, and uses the energy conservation property to effectively improve the accuracy of the model, and also makes an important contribution to solving the gradient problem in deep learning. Firstly, the main motivation and theoretical basis of deep learning guided by Hamiltonian mechanics are briefly introduced. Secondly, the neural network based on Hamiltonian mechanics is discussed in detail, and its characteristics, application scenarios and limitations are summarized. Finally, the problems and challenges of the combination of Hamiltonian mechanics and neural networks in the field of natural language processing are discussed, and the future development is prospected to provide a reference for further research.

Key words: Hamiltonian dynamics, gradient vanishing, neural networks, natural language processing