[1] AN J Y, WAN ZAINON W M N. Integrating color cues to improve multimodal sentiment analysis in social media[J]. Engineering Applications of Artificial Intelligence, 2023, 126: 106874.
[2] YANG X C, FENG S, WANG D L, et al. Image-text multimodal emotion classification via multi-view attentional network[J]. IEEE Transactions on Multimedia, 2021, 23: 4014-4026.
[3] ZHU L N, ZHU Z C, ZHANG C W, et al. Multimodal sentiment analysis based on fusion methods: a survey[J]. Information Fusion, 2023, 95: 306-325.
[4] 闫尚义, 王靖亚, 刘晓文, 等. 基于多头自注意力池化与多粒度特征交互融合的微博情感分析[J]. 数据分析与知识发现, 2023, 7(4): 32-45.
YAN S Y, WANG J Y, LIU X W, et al. Microblog sentiment analysis with multi-head self-attention pooling and multi-granularity feature interaction fusion[J]. Data Analysis and Knowledge Discovery, 2023, 7(4): 32-45.
[5] 吴旭旭, 陈鹏, 江欢. 基于多特征融合的微博细粒度情感分析[J]. 数据分析与知识发现, 2023, 7(12): 102-113.
WU X X, CHEN P, JIANG H. Micro-blog fine-grained sentiment analysis based on multi-feature fusion[J]. Data Analysis and Knowledge Discovery, 2023, 7(12): 102-113.
[6] FAN S, LIN C, LI H N, et al. Sentiment-aware word and sentence level pre-training for sentiment analysis[J]. arXiv:2210. 09803, 2022.
[7] WANKHADE M, RAO A C S, KULKARNI C. A survey on sentiment analysis methods, applications, and challenges[J]. Artificial Intelligence Review, 2022, 55(7): 5731-5780.
[8] WU F Z, HUANG Y F, SONG Y Q, et al. Towards building a high-quality microblog-specific Chinese sentiment lexicon[J]. Decision Support Systems, 2016, 87: 39-49.
[9] MOREO A, ROMERO M, CASTRO J L, et al. Lexicon-based comments-oriented news sentiment analyzer system[J]. Expert Systems with Applications, 2012, 39(10): 9166-9180.
[10] TRIPATHY A, AGRAWAL A, RATH S K. Classification of sentiment reviews using n-gram machine learning approach[J]. Expert Systems with Applications, 2016, 57: 117-126.
[11] WU F Z, HUANG Y F, SONG Y Q. Structured microblog sentiment classification via social context regularization[J]. Neurocomputing, 2016, 175: 599-609.
[12] AL AMRANI Y, LAZAAR M, EL KADIRI K E. Random forest and support vector machine based hybrid approach to sentiment analysis[J]. Procedia Computer Science, 2018, 127: 511-520.
[13] KIM Y. Convolutional neural networks for sentence classification[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2014: 1746-1751.
[14] LIU P F, QIU X P, HUANG X J. Recurrent neural network for text classification with multi-task learning[J]. arXiv:1605. 05101, 2016.
[15] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, 2017: 5998-6008.
[16] YIN D, MENG T, CHANG K W. SentiBERT: a transferable transformer-based architecture for compositional sentiment semantics[J]. arXiv:2005.04114, 2020.
[17] TIAN H, GAO C, XIAO X Y, et al. SKEP: sentiment knowledge enhanced pre-training for sentiment analysis[J]. arXiv: 2005.05635, 2020.
[18] SUN Y D, ZHU D J, DU H W, et al. Motifs-based recommender system via hypergraph convolution and contrastive learning[J]. Neurocomputing, 2022, 512: 323-338.
[19] YAO L, MAO C S, LUO Y. Graph convolutional networks for text classification[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 7370-7377.
[20] LIN Y X, MENG Y X, SUN X F, et al. BertGCN: transductive text classification by combining GNN and BERT[C]//Fin-dings of the Association for Computational Linguistics: ACL-IJCNLP 2021. Stroudsburg: ACL, 2021: 1456-1462.
[21] WANG Y Z, WANG C X, ZHAN J Y, et al. Text FCG: fusing contextual information via graph learning for text classification[J]. Expert Systems with Applications, 2023, 219: 119658.
[22] PHAN H T, NGUYEN N T. A fuzzy graph convolutional network model for sentence-level sentiment analysis[J]. IEEE Transactions on Fuzzy Systems, 2024, 32(5): 2953-2965.
[23] LIU W X, ZHANG Z Z, WANG B. Dual-view hypergraph attention network for news recommendation[J]. Engineering Applications of Artificial Intelligence, 2024, 133: 108256.
[24] DING K Z, WANG J L, LI J D, et al. Be more with less: hypergraph attention networks for inductive text classification[J]. arXiv:2011.00387, 2020.
[25] YAN X D, SONG T W, JIAO Y F, et al. Spatio-temporal hypergraph learning for next POI recommendation[C]//Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2023: 403-412.
[26] NING Q, ZHAO Y M, GAO J, et al. AMHMDA: attention aware multi-view similarity networks and hypergraph learning for miRNA disease associations identification[J]. Briefings in Bioinformatics, 2023, 24(2): bbad094.
[27] LI J K, WANG J H, WU L, et al. AMHGCN: adaptive multi-level hypergraph convolution network for human motion prediction[J]. Neural Networks, 2024, 172: 106153.
[28] YUAN X, SUN M Y, CHEN Z K, et al. Semantic clustering-based deep hypergraph model for online reviews semantic classification in cyber-physical-social systems[J]. IEEE Access, 2018, 6: 17942-17951.
[29] 李全鑫, 庞俊, 朱峰冉. 结合Bert与超图卷积网络的文本分类模型[J]. 计算机工程与应用, 2023, 59(17): 107-115.
LI Q X, PANG J, ZHU F R. Text classification method based on integration of Bert and hypergraph convolutional network[J]. Computer Engineering and Applications, 2023, 59(17): 107-115.
[30] LE-KHAC P H, HEALY G, SMEATON A F. Contrastive representation learning: a framework and review[J]. IEEE Access, 2020, 8: 193907-193934.
[31] KLEIN T, NABI M. miCSE: mutual information contrastive learning for low-shot sentence embeddings[J]. arXiv:2211. 04928, 2022.
[32] LI J C, SHANG J B, MCAULEY J. UCTopic: unsupervised contrastive learning for phrase representations and topic mining[J]. arXiv:2202.13469, 2022.
[33] GIORGI J, NITSKI O, WANG B, et al. DeCLUTR: deep contrastive learning for unsupervised textual representations[J]. arXiv:2006.03659, 2020.
[34] PAN L, HANG C W, SIL A, et al. Improved text classification via contrastive adversarial training[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36(10): 11130-11138.
[35] WANG D, DING N, LI P J, et al. CLINE: contrastive learning with semantic negative examples for natural language understanding[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2021: 2332-2342.
[36] KIM T, YOO K M, LEE S G. Self-guided contrastive learning for BERT sentence representations[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2021: 2528-2540.
[37] JIAN Z Q, LI J J, WU Q Q, et al. Retrieval contrastive lear-ning for aspect-level sentiment classification[J]. Information Processing & Management, 2024, 61(1): 103539.
[38] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[J]. arXiv:1810.04805, 2018.
[39] LIU Y H, OTT M, GOYAL N, et al. RoBERTa: a robustly optimized BERT pretraining approach[J]. arXiv:1907.11692, 2019.
[40] FENG Y F, YOU H X, ZHANG Z Z, et al. Hypergraph neural networks[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 3558-3565.
[41] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
[42] LI M, LONG Y, QIN L, et al. Emotion corpus construction based on selection from hashtags[C]//Proceedings of the 10th International Conference on Language Resources and Evaluation, 2016: 1845-1849.
[43] 胥桂仙, 刘兰寅, 王家诚, 等. 基于BERT和超图对偶注意力网络的文本情感分析[J]. 计算机应用研究, 2024, 41(3): 786-793.
XU G X, LIU L Y, WANG J C, et al. Text sentiment analysis based on BERT and hypergraph with dual attention network[J]. Application Research of Computers, 2024, 41(3): 786-793.
[44] 张佳威, 王中卿, 陈嘉沥. 基于文本生成的多粒度评论情感分析[J/OL]. 计算机科学 [2024-08-03]. https://link.cnki.net/urlid/50.1075.tp.20241122.1115.008.
ZHANG J W, WANG Z Q, CHEN J L. Multi-grained sentiment analysis of comments based on text generation[J/OL]. Computer Science [2024-08-03]. https://link.cnki.net/urlid/50.1075.tp.20241122.1115.008.
[45] CUI Y M, CHE W X, LIU T, et al. Pre-training with whole word masking for Chinese BERT[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2021, 29: 3504-3514.
[46] LOSHCHILOV I, HUTTER F. Decoupled weight decay regularization[J]. arXiv:1711.05101, 2017.
[47] XIAO Z, LIANG P J. Chinese sentiment analysis using bi-directional LSTM with word embedding[C]//Proceedings of the 2nd International Conference on Cloud Computing and Security. Cham: Springer, 2016: 601-610.
[48] WANG J L, DING K Z, HONG L J, et al. Next-item recommendation with sequential hypergraphs[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 1101-1110. |