计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (19): 205-213.DOI: 10.3778/j.issn.1002-8331.2104-0308
李文亮,杨秋翔,秦权
LI Wenliang, YANG Qiuxiang, QIN Quan
摘要:
近年来,深度学习被广泛应用于文本情感分析。其中文本卷积神经网络(TextCNN)最具代表性,但是TxetCNN的语义特征提取存在词嵌入维度语义特征丢失、最大池化算法特征提取不足和文本长期依赖关系丢失的问题。针对以上问题,提出多特征混合模型(BiLSTM-MFCNN)的文本情感分析方法。该方法使用双向长短记忆网络(BiLSTM)学习文本的长期依赖关系;改进TextCNN的卷积层和池化层提出多特征卷积神经网络(MFCNN),卷积层利用五种不同的卷积算法,分别从句子维度、整个词嵌入维度、单个词嵌入维度、相邻词向量维度和单个词向量维度提取文本的语义特征,池化层利用最大池化算法和平均池化算法,获取文本的情感特征。在中文NLPCC Emotion Classification Challenge和COAE2014数据集、英文Twitter数据集进行对比实验,实验结果表明该混合模型在文本情感分析任务中能够取得更好的效果。