[1] 杜雪盈, 刘名威, 沈立炜, 等. 面向链接预测的知识图谱表示学习方法综述[J]. 软件学报, 2024, 35(1): 87-117.
DU X Y, LIU M W, SHEN L W, et al. Survey on represent-ation learning methods of knowledge graph for link predi-ction[J]. Journal of Software, 2024, 35(1): 87-117.
[2] 于梦波, 杜建强, 罗计根, 等. 基于知识表示学习的知识图谱补全研究进展[J]. 计算机工程与应用, 2023, 59(18): 59-73.
YU M B, DU J Q, LUO J G, et al. Research progress of knowledge graph completion based on knowledge representation learning[J]. Computer Engineering and Applications, 2023, 59(18): 59-73.
[3] BORDES A, USUNIER N, GARCIA-DURáN A, et al. Translating embeddings for modeling multi-relational data[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. New York: ACM, 2013: 2787-2795.
[4] NICKEL M, TRESP V, KRIEGEL H P. A three-way model for collective learning on multi-relational data [C]//Proceedings of the International Conference on Machine Learning. New York: JMLR, 2011: 3104482-3104584.
[5] VASHISHTH S, SANYAL S, NITIN V, et al. InteractE: impr-oving convolution-based knowledge graph embeddings by increasing feature interactions[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 3009-3016.
[6] DAI G Q, WANG X Z, ZOU X Y, et al. MRGAT: multi-relational graph attention network for knowledge graph completion[J]. Neural Networks, 2022, 154: 234-245.
[7] YAO L, MAO C, LUO Y. KG-BERT: BERT for knowledge graph completion[J]. arXiv:1909.03193, 2019.
[8] WANG Z, ZHANG J W, FENG J L, et al. Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2014: 1112-1119.
[9] LIN Y, LIU Z, SUN M, et al. Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2015: 2181-2187.
[10] XIAO H, HUANG M, HAO Y, et al. TransA: an adaptive approach for knowledge graph embedding[J]. arXiv:1509. 05490, 2015.
[11] SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks[C]//Proceedings of the 15th International Conference on the Semantic Web. Cham: Springer, 2018: 593-607.
[12] WANG J, LI W, LIU F, et al. Hic-KGQA: improving multi-hop question answering over knowledge graph via hypergraph and inference chain[J]. Knowledge-Based Systems, 2023, 277: 110810.
[13] 张天成, 田雪, 孙相会, 等. 知识图谱嵌入技术研究综述[J]. 软件学报, 2023, 34(1): 277-311.
ZHANG T C, TIAN X, SUN X H, et al. Overview on knowledge graph embedding technology research[J]. Journal of Software, 2023, 34(1): 277-311.
[14] CAI H, ZHENG V W, CHANG K C C. A comprehensive survey of graph embedding: problems, techniques, and applications[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(9): 1616-1637.
[15] XIE R, LIU Z, JIA J, et al. Representation learning of knowledge graphs with entity descriptions[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2016: 29-35.
[16] WANG T, SHEN B, ZHONG Y. SSKGE: a time-saving knowledge graph embedding framework based on structure enhancement and semantic guidance[J]. Applied Intelligence, 2023, 53(21): 25171-25183.
[17] LIU X, WANG Z, SUN Y, et al. ISA-KGC: integrated semantics-structure analysis in knowledge graph completion[J]. IEEE Access, 2024, 12: 57250-57260.
[18] CHEN T, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations[C]//Proceedings of the International Conference on Machine Learning, 2020: 1597-1607.
[19] WANG L, ZHAO W, WEI Z, et al. SimKGC: simple contrastive knowledge graph completion with pre-trained language models[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, 2022: 4281-4294.
[20] WU S, SHEN X, XIA R. Commonsense knowledge graph completion via contrastive pre-training and node clustering[C]//Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics, 2023: 13977-13989.
[21] SHI G, ZHU Y, LIU J K, et al. HeGCL: advance self-supervised learning in heterogeneous graph-level representation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023: 1-12.
[22] TAN Z, CHEN Z, FENG S, et al. KRACL: contrastive learning with graph context modeling for sparse knowledge graph completion[C]//Proceedings of the ACM Web Conference, 2023: 2548-2559.
[23] 乔梓峰, 秦宏超, 胡晶晶, 等. 融合多视图对比学习的知识图谱补全算法[J]. 计算机科学与探索, 2024, 18(4): 1001-1009.
QIAO Z F, QIN H C, HU J J, et al. Knowledge graph completion algorithm with multi-view contrastive learning[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 1001-1009. |