[1] GUPTA A, ONG Y S, FENG L. Multifactorial evolution: toward evolutionary multitasking[J]. IEEE Transactions on Evolutionary Computation, 2015, 20(3): 343-357.
[2] 李豪, 汪磊, 张元侨, 等. 演化多任务优化研究综述[J]. 软件学报, 2023, 34(2): 509-538.
LI H, WANG L, ZHANG Y Q, et al. Survey of evolutionary multitasking optimization[J]. Journal of Software, 2023, 34(2): 509-538.
[3] 李坚强, 蔡俊创, 孙涛, 等. 面向复杂物流配送场景的车辆路径规划多任务辅助进化算法[J]. 自动化学报, 2024, 50(3): 544-559.
LI J Q, CAI J C, SUN T, et al. Multitask-based assisted evolutionary algorithm for vehicle routing problems in complex logistics distribution scenarios[J]. Acta Automatica Sinica, 2024, 50(3): 544-559.
[4] FENG L, HUANG Y, ZHOU L, et al. Explicit evolutionary multitasking for combinatorial optimization: a case study on capacitated vehicle routing problem[J]. IEEE Transactions on Cybernetics, 2020, 51(6): 3143-3156.
[5] SHEN J, DONG H, TIAN Y, et al. Adaptive knowledge transfer based on machine learning method for evolutionary multitasking optimization[J]. Information Sciences, 2025, 702: 121908.
[6] LIU Z B, YUAN J H, ZHANG H L, et al. Optimal linear crossover for mitigating negative transfer in evolutionary multitasking[J]. IEEE Transactions on Evolutionary Computation, 2024, 99: 1.
[7] THANG T B, DAO T C, LONG N H, et al. Parameter adapt-ation in multifactorial evolutionary algorithm for many-task optimization[J]. Memetic Computing, 2021, 13(4): 433-446.
[8] BALI K K, ONG Y S, GUPTA A, et al. Multifactorial evolutionary algorithm with online transfer parameter estimation: MFEA-II[J]. IEEE Transactions on Evolutionary Computation, 2019, 24(1): 69-83.
[9] ZHOU L, FENG L, TAN K C, et al. Toward adaptive knowledge transfer in multifactorial evolutionary computation[J]. IEEE transactions on cybernetics, 2020, 51(5): 2563-2576.
[10] MA X, ZHENG Y, ZHU Z, et al. Improving evolutionary multitasking optimization by leveraging inter-task gene similarity and mirror transformation[J]. IEEE Computational Intelligence Magazine, 2021, 16(4): 38-53.
[11] WEI T, WANG S, ZHONG J, et al. A review on evolutionary multitask optimization: trends and challenges[J]. IEEE Transactions on Evolutionary Computation, 2021, 26(5): 941-960.
[12] WANG Z Z, CAO L L, FENG L, et al. Evolutionary multitask optimization with lower confidence bound-based solution selection strategy[J]. IEEE Transactions on Evolutionary Computation, 2025, 29(1): 132-144.
[13] FENG L, ZHOU L, ZHONG J, et al. Evolutionary multitasking via explicit autoencoding[J]. IEEE transactions on cybernetics, 2018, 49(9): 3457-3470.
[14] DING J, YANG C, JIN Y, et al. Generalized multitasking for evolutionary optimization of expensive problems[J]. IEEE Transactions on Evolutionary Computation, 2017, 23(1): 44-58.
[15] BALI K K, GUPTA A, FENG L, et al. Linearized domain adaptation in evolutionary multitasking[C]//Proceedings of the 2017 IEEE Congress on Evolutionary Computation (CEC). New York: ACM, 2017: 1295-1302.
[16] XUE X, ZHANG K, TAN K C, et al. Affine transformation-enhanced multifactorial optimization for heterogeneous problems[J]. IEEE Transactions on Cybernetics, 2020, 52(7): 6217-6231.
[17] GUPTA A, ONG Y S, FENG L. Insights on transfer optimization: because experience is the best teacher[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2017, 2(1): 51-64.
[18] STEWART G W. On the early history of the singular value decomposition[J]. SIAM Review, 1993, 35(4): 551-566.
[19] HU Z Y, WANG S, LI Y L, et al. Optimisation of steel rol-ling schedule based on evolutionary multi-tasking transfer algorithm[J]. Computers & Operations Research, 2024, 169: 106743.
[20] ZHANG T, LI D, Li Y, et al. Constrained multitasking optimization via co-evolution and domain adaptation[J]. Swarm and Evolutionary Computation, 2024, 87: 101570.
[21] JAIN H, DEB K. An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: handling constraints and exten-ding to an adaptive approach[J]. IEEE Transactions on Evolutionary Computation, 2013, 18(4): 602-622.
[22] HOTELLING H. Relations between two sets of variates[M]//Breakthroughs in statistics: methodology and distribution. New York, NY: Springer New York, 1992: 162-190.
[23] LIM R, GUPTA A, ONG Y S, et al. Non-linear domain adapt-ation in transfer evolutionary optimization[J]. Cognitive Computation, 2021, 13: 290-307.
[24] DEB K, BEYER H G. Self-adaptive genetic algorithms with simulated binary crossover[J]. Evolutionary Computation, 2001, 9(2): 197-221.
[25] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
[26] DA B, ONG Y S, FENG L, et al. Evolutionary multitasking for single-objective continuous optimization: benchmark problems, performance metric, and baseline results[J]. arXiv:1706. 03470, 2017.
[27] YUAN Y, ONG Y S, FENG L, et al. Evolutionary multitas-king for multiobjective continuous optimization: benchmark problems, performance metrics and baseline results[J]. arXiv:1706.02766, 2017.
[28] ZAR J H. Significance testing of the Spearman rank correl-ation coefficient[J]. Journal of the American Statistical Association, 1972, 67: 578-580.
[29] FENG L, ZHOU W, ZHOU L, et al. An empirical study of multifactorial PSO and multifactorial DE[C]//Proceedings of the 2017 IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2017: 921-928.
[30] CHEN A, REN Z, WANG M, et al. Aligning heterogeneous optimization problems with optimal correspondence assisted affine transformation for evolutionary multi-tasking[J]. Applied Soft Computing, 2023, 136: 110070.
[31] LIU Z B, LI G, ZHANG H L, et al. Multifactorial evolutionary algorithm based on diffusion gradient descent[J]. IEEE Transactions on Cybernetics, 2024, 54(7): 4267-4279.
[32] GUPTA A, ONG Y S, FENG L, et al. Multiobjective multifactorial optimization in evolutionary multitasking[J]. IEEE Transactions on Cybernetics, 2016, 47(7): 1652-1665.
[33] BALI K K, GUPTA A, ONG Y S, et al. Cognizant multitas-king in multiobjective multifactorial evolution: MO-MFEA-II[J]. IEEE Transactions on Cybernetics, 2020, 51(4): 1784-1796.
[34] YANG C E, DING J L, TAN K C, et al. Two-stage assortative mating for multi-objective multifactorial evolutionary optimization[C]//Proceedings of the 2017 IEEE 56th Annual Conference on Decision and Control (CDC). New York: ACM, 2017: 76-81.
[35] ZITZLER E, THIELE L, LAUMANNS M, et al. Performance assessment of multiobjective optimizers: an analysis and review[J]. IEEE Transactions on evolutionary comput-ation, 2003, 7(2): 117-132.
[36] CARRASCO J, GARCíA S, RUEDA M M, et al. Recent trends in the use of statistical tests for comparing swarm and evolutionary computing algorithms: practical guidelines and a critical review[J]. Swarm and Evolutionary Comput-ation, 2020, 54: 100665.
[37] CHEN Y, ZHONG J, FENG L, et al. An adaptive archive-based evolutionary framework for many-task optimization[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2019, 4(3): 369-384. |