[1] CHEN Y, MANCINI M, ZHU X, et al. Semi-supervised and unsupervised deep visual learning: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(3): 1327-1347.
[2] REN W Q, TANG Y, SUN Q Y, et al. Visual semantic segmentation based on few/zero-shot learning: an overview[J]. CAA Journal of Automatica Sinica, 2024, 11(5): 1106-1126.
[3] HYUN CHO J, MALL U, BALA K, et al. PiCIE: unsupervised semantic segmentation using invariance and equivariance in clustering[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 16789-16799.
[4] JI X, VEDALDI A, HENRIQUES J. Invariant information clustering for unsupervised image classification and segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 9864-9873.
[5] HAMILTON M, ZHANG Z, HARIHARAN B, et al. Unsupervised semantic segmentation by distilling feature correspondences[J]. arXiv:2203.08414, 2022.
[6] SEONG H S, MOON W, LEE S, et al. Leveraging hidden positives for unsupervised semantic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 19540-19549.
[7] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: Transformers for image recognition at scale[J]. arXiv:2010.11929, 2020.
[8] OUALI Y, HUDELOT C, TAMI M. Autoregressive unsupervised image segmentation[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2020: 142-158.
[9] HARB R, KN?BELREITER P. Infoseg: Unsupervised semantic image segmentation with mutual information maximization[C]//Proceedings of the German Conference on Pattern Recognition. Cham: Springer International Publishing, 2021: 18-32.
[10] CARON M, TOUVRON H, MISRA I, et al. Emerging properties in self-supervised vision transformers[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9630-9640.
[11] AFLALO A, BAGON S, KASHTI T, et al. DeepCut: unsupervised segmentation using graph neural networks clustering[C]//Proceedings of the IEEE/CVF International Conference on Com-puter Vision Workshops. Piscataway: IEEE, 2023: 32-41.
[12] LUO M, MA Y F, ZHANG H J. A spatial constrained K-means approach to image segmentation[C]//Proceedings of the 4th International Conference on Information, Communications and Signal Processing. Piscataway: IEEE, 2003: 738-742.
[13] NG A, JORDAN M, WEISS Y. On spectral clustering: analysis and an algorithm[C]//Proceedings of the 15th International Conference on Neural Information Processing Systems: Natural and Synthetics, 2001: 849-856.
[14] PAPPAS T N, JAYANT N S. An adaptive clustering algorithm for image segmentation[C]//Proceedings of the International Conference on Acoustics, Speech, and Signal Processing. Piscataway: IEEE, 1989: 1667-1670.
[15] SHI J B, MALIK J. Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 888-905.
[16] BARBATO M P, NAPOLETANO P, PICCOLI F, et al. Unsupervised segmentation of hyperspectral remote sensing images with superpixels[J]. Remote Sensing Applications: Society and Environment, 2022, 28: 100823.
[17] DHANACHANDRA N, MANGLEM K, CHANU Y J. Image segmentation using K-means clustering algorithm and subtractive clustering algorithm[J]. Procedia Computer Science, 2015, 54: 764-771.
[18] KOOHPAYEGANI S A, TEJANKAR A, PIRSIAVASH H. Mean shift for self-supervised learning[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 10306-10315.
[19] MELAS-KYRIAZI L, RUPPRECHT C, LAINA I, et al. Deep spectral methods: a surprisingly strong baseline for unsupervised semantic segmentation and localization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 8354-8365.
[20] DENG Z J, LUO Y C. Learning neural eigenfunctions for unsupervised semantic segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 551-561.
[21] PINHEIRO P O, ALMAHAIRI A, BENMALEK R, et al. Uns-upervised learning of dense visual representations[C]//Advances in Neural Information Processing Systems, 2020: 4489-4500.
[22] WANG X L, ZHANG R F, SHEN C H, et al. Dense contrastive learning for self-supervised visual pre-training[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 3023-3032.
[23] GANSBEKE W, VANDENHENDE S, GEORGOULIS S, et al. Unsupervised semantic segmentation by contrasting object mask proposals[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 10032-10042.
[24] ZADAIANCHUK A, KLEINDESSNER M, ZHU Y, et al. Uns-upervised semantic segmentation with self-supervised object-centric representations[J]. arXiv:2207.05027, 2022.
[25] HéNAFF O J, KOPPULA S, SHELHAMER E, et al. Object discovery and representation networks[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2022: 123-143.
[26] HENAFF O J, KOPPULA S, ALAYRAC J B, et al. Efficient visual pretraining with contrastive detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 10066-10076.
[27] WEN X, ZHAO B, ZHENG A, et al. Self-supervised visual representation learning with semantic grouping[C]//Advances in Neural Information Processing Systems, 2022: 16423-16438.
[28] SEITZER M, HORN M, ZADAIANCHUK A, et al. Bridging the gap to real-world object-centric learning[J]. arXiv:2209. 14860, 2022.
[29] CHEEGER J. A lower bound for the smallest eigenvalue of the Laplacian[M]. Princeton: Princeton University Press, 1971.
[30] KR?HENBüHL P, KOLTUN V. Efficient inference in fully connected CRFs with Gaussian edge potentials[J]. arXiv:1210. 56441, 2012.
[31] CAESAR H, UIJLINGS J, FERRARI V. COCO-stuff: thing and stuff classes in context[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 1209-1218.
[32] CORDTS M, OMRAN M, RAMOS S, et al. The cityscapes dataset for semantic urban scene understanding[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 3213-3223.
[33] MACQUEEN J. Some methods for classification and analysis of multivariate observations[C]//Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, 1967: 281-298.
[34] SELVARAJU R R, DESAI K, JOHNSON J, et al. Casting your model: learning to localize improves self-supervised representations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 11058-11067. |