[1] 毛文平, 李帅永, 谢现乐, 等. 基于自适应机制改进蚁群算法的移动机器人全局路径规划[J]. 控制与决策, 2023, 38(9): 2520-2528.
MAO W P, LI S Y, XIE X L, et al. Global path planning of mobile robot based on adaptive mechanism improved ant colony algorithm[J]. Control and Decision, 2023, 38(9): 2520-2528.
[2] 何丽, 宁子豪, 袁亮, 等. 社会交互空间下基于Social_DWA算法的服务机器人动态路径规划[J/OL]. 西安交通大学学报: 1-10 (2024-01-23) [2024-09-16]. http://kns.cnki.net/kcms/detail/61.1069.T.20240122.1359.004.html.
HE L, NING Z H, YUAN L, et al. Dynamic path planning of service robot based on Social_DWA in social interaction space[J]. Journal of Xi’an Jiaotong University: 1-10 (2024-01-23) [2024-06-16]. http://kns.cnki.net/kcms/detail/61.1069.T.20240122.1359.004.html.
[3] 魏武, 韩进, 李艳杰, 等. 基于双树Quick-RRT算法的移动机器人路径规划[J]. 华南理工大学学报(自然科学版), 2021, 49(7): 51-58.
WEI W, HAN J, LI Y J, et al. Path planning of mobile robots based on dual-tree quick-RRT algorithm[J]. Journal of South China University of Technology (Natural Science Edition), 2021, 49(7): 51-58.
[4] 崔炜, 朱发证. 机器人导航的路径规划算法研究综述[J]. 计算机工程与应用, 2023, 59(19): 10-20.
CUI W, ZHU F Z. Review of path planning algorithms for robot navigation[J]. Computer Engineering and Applications, 2023, 59(19): 10-20.
[5] SIHITE E, MOTTIS B, GHANEM P, et al. Efficient path planning and tracking for multi-modal legged-aerial locom- otion using integrated probabilistic road maps (PRM) and reference governors (RG)[C]//Proceedings of the 2022 IEEE 61st Conference on Decision and Control. Piscataway: IEEE, 2022: 764-770.
[6] CHEN G L, SHENG W H, LI Y Q, et al. Humanoid robot portrait drawing based on deep learning techniques and efficient path planning[J]. Arabian Journal for Science and Engineering, 2022, 47(8): 9459-9470.
[7] TAHERI E, FERDOWSI M H, DANESH M. Fuzzy greedy RRT path planning algorithm in a complex configuration space[J]. International Journal of Control, Automation and Systems, 2018, 16(6): 3026-3035.
[8] MOHAMMED H, ROMDHANE L, JARADAT M A. RRT*N: an efficient approach to path planning in 3D for Static and Dynamic Environments[J]. Advanced Robotics, 2021, 35(3/4): 168-180.
[9] CHOON K T, WAI K W, THU S M. Vision based indoor surveillance patrol robot using extended dijkstra algorithm in path planning[J]. Journal of Engineering Technology and Applied Physics, 2021, 3(2): 21-28.
[10] FRANSEN K, VAN EEKELEN J. Efficient path planning for automated guided vehicles using A* (Astar) algorithm incorporating turning costs in search heuristic[J]. International Journal of Production Research, 2023, 61(3): 707-725.
[11] LAI R S, WU Z Y, LIU X G, et al. Fusion algorithm of the improved A* algorithm and segmented Bézier curves for the path planning of mobile robots[J]. Sustainability, 2023, 15(3): 2483.
[12] 龙厚云, 李光, 谭薪兴, 等. 融合A*的改进RRT机械臂路径规划[J]. 计算机工程与应用, 2024, 60(4): 366-374.
LONG H Y, LI G, TAN X X, et al. Path planning of robotic arm based on improved RRT algorithm combined with A* [J]. Computer Engineering and Applications, 2024, 60(4): 366-374.
[13] KARAMAN S, FRAZZOLI E. Incremental sampling-based algorithms for a class of pursuit-evasion games[M]. Berlin, Heidelberg: Springer, 2011: 71-87.
[14] 许万, 杨晔, 余磊涛, 等. 一种基于改进RRT*的全局路径规划算法[J]. 控制与决策, 2022, 37(4): 829-838.
XU W, YANG Y, YU L T, et al. A global path planning algorithm based on improved RRT*[J]. Control and Decision, 2022, 37(4): 829-838.
[15] KUFFNER J J, LAVALLE S M. RRT-connect: an efficient approach to single-query path planning[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2002: 995-1001.
[16] 王海芳, 张瑶, 朱亚锟, 等. 基于改进双向RRT*的移动机器人路径规划算法[J]. 东北大学学报(自然科学版), 2021, 42(8): 1065-1070.
WANG H F, ZHANG Y, ZHU Y K, et al. Mobile robot path planning based on improved bidirectional RRT*[J]. Journal of Northeastern University (Natural Science), 2021, 42(8): 1065-1070.
[17] 罗征志, 韩怡可, 张鑫, 等. 改进RRT-Connect与DWA算法的巡检机器人路径规划研究[J]. 计算机工程与应用, 2024, 60(15): 344-354.
LUO Z Z, HAN Y K, ZHANG X, et al. Research on path planning of inspection robot with improved RRT-connect and DWA algorithm[J]. Computer Engineering and Applications, 2024, 60(15): 344-354.
[18] GAMMELL J D, SRINIVASA S S, BARFOOT T D. Informed RRT*: optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic[C]//Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2014: 2997-3004.
[19] NASIR J, ISLAM F, MALIK U, et al. RRT*-SMART: a rapid convergence implementation of RRT[J]. International Journal of Advanced Robotic Systems, 2013, 10(7): 299.
[20] LI Q H, WANG J H, LI H M, et al. HQD-RRT*: a high-quality path planner for mobile robot in dynamic environment[J]. The Journal of China Universities of Posts and Telecommunications, 2022, 29(3): 69-80.
[21] ZHANG Z C, WU H B, ZHOU H, et al. Recovery path planning for autonomous underwater vehicles using constrained Bi-RRT*-smart algorithms[C]//Proceedings of the OCEANS 2023-Limerick. Piscataway: IEEE, 2023: 1-6.
[22] 董璐, 熊爱玲. 基于改进RRT*-Smart的复杂动态环境下的无人艇路径规划[J]. 智能科学与技术学报, 2022, 4(2): 264-276.
DONG L, XIONG A L. Path planning for unmanned surface vehicle in complex dynamic environment based on improved RRT*-Smart[J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(2): 264-276.
[23] 张瑞, 周丽, 刘正洋. 融合RRT*与DWA算法的移动机器人动态路径规划[J]. 系统仿真学报, 2024, 36(4): 957-968.
ZHANG R, ZHOU L, LIU Z Y. Dynamic path planning for mobile robot based on RRT* and dynamic window approach[J]. Journal of System Simulation, 2024, 36(4): 957-968.
[24] 赖荣燊, 窦磊, 巫志勇, 等. 融合改进A*算法和动态窗口法的移动机器人路径规划[J]. 系统仿真学报, 2024, 36(8): 1884-1894.
LAI R S, DOU L, WU Z Y, et al. Fusion of improved A* and dynamic window approach for mobile robot path planning[J]. Journal of System Simulation, 2024, 36(8): 1884-1894.
[25] YUKSEL C, SCHAEFER S, KEYSER J. On the parameteri-zation of catmull-Rom curves[C]//Proceedings of the 2009 SIAM/ACM Joint Conference on Geometric and Physical Modeling. New York: ACM, 2009: 47-53. |