[1] ZHANG D, YIN J, ZHU X, et al. Network representation learning: a survey[J]. IEEE Transactions on Big Data, 2020, 6(1): 3-28.
[2] WU J, ZHU X, ZHANG C, et al. Bag constrained structure pattern mining for multi-graph classification[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(10): 2382-2396.
[3] JIA L. Semi-supervised multi-class classification algorithm based on local learning[M]//Information engineering and applications. London: Springer, 2012: 111-118.
[4] ZHI H Y, ZHAO L, LEE C C, et al. A novel graph neural network methodology to investigate dihydroorotate dehydrogenase inhibitors in small cell lung cancer[J]. Biomolecules, 2021, 11(3): 477.
[5] PANG J, GU Y, XU J, et al. Semi-supervised multi-graph classification using optimal feature selection and extreme learning machine[J]. Neurocomputing, 2018, 277: 89-100.
[6] YANG G, ZHANG N, JIN T, et al. Research on semi-supervised multi-graph classification algorithm based on MR-MGSSL for sensor network[J]. EURASIP Journal on Wireless Communications and Networking, 2020, 2020(1): 130.
[7] WANG R, WANG X, SHI C, et al. Uncovering the structural fairness in graph contrastive learning[J]. arXiv:2210.03011, 2022.
[8] ZHENG Y, PAN S, LEE V C S, et al. Rethinking and scaling up graph contrastive learning: an extremely efficient approach with group discrimination[C]//Advances in Neural Information Processing Systems, 2022, 35: 10809-10820.
[9] YOU Y, CHEN T, SUI Y, et al. Graph contrastive learning with augmentations[C]//Advances in Neural Information Processing Systems, 2020, 33: 5812-5823.
[10] VELICKOVIC P, FEDUS W, HAMILTON W L, et al. Deep graph infomax[J]. arXiv:1809.10341, 2018
[11] 王永贵, 赵晓暄. 结合自监督学习的图神经网络会话推荐[J]. 计算机工程与应用, 2023, 59(3): 244-252.
WANG Y G, ZHAO X X. Self-supervised graph neural networks for session-based recommendation[J]. Computer Engineering and Applications, 2023, 59(3): 244-252.
[12] 蒋光峰, 胡鹏程, 叶桦, 等. 基于重构误差的同构图分类模型[J]. 计算机科学与探索, 2022, 16(1): 185-193.
JIANG G F, HU P C, YE H, et al. Isomorphic graph classification model based on reconstruction error[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 185-193.
[13] YING C, CAI T, LUO S, et al. Do transformers really perform badly for graph representation[C]//Advances in Neural Information Processing Systems, 2021, 34: 28877-28888.
[14] WU J, PAN S, ZHU X, et al. Positive and unlabeled multi-graph learning[J]. IEEE Transactions on Cybernetics, 2017, 47(4): 818-829.
[15] ACHANTA R, SHAJI A, SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274-2282.
[16] XU K, HU W, LESKOVEC J, et al. How powerful are graph neural networks?[J]. arXiv:1810.00826, 2018. |