[1] 宋晓茹, 刘康, 高嵩, 等. 复杂战场环境下改进YOLOv5军事目标识别算法研究[J]. 兵工学报, 2024, 45(3): 934-947.
SONG X R, LIU K, GAO S, et al. Research on improved YOLOv5 military target recognition algorithm in complex battlefield environment[J]. Acta Armamentarii, 2024, 45(3): 934-947.
[2] 曹亚明, 肖奇, 杨震. 仿真图像作为模板的遥感影像小目标检测方法[J]. 计算机工程与应用, 2022, 58(17): 111-119.
CAO Y M, XIAO Q, YANG Z. Remote sensing image small target detection method using simulation image as template[J]. Computer Engineering and Applications, 2022, 58(17): 111-119.
[3] MITTAL P, SINGH R, SHARMA A. Deep learning-based object detection in low-altitude UAV datasets: a survey[J]. Image and Vision Computing, 2020, 104: 104046.
[4] CHENG G, HAN J. A survey on object detection in optical remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 117: 11-28.
[5] 董刚, 谢维成, 黄小龙, 等. 深度学习小目标检测算法综述[J]. 计算机工程与应用, 2023, 59(11): 16-27.
DONG G, XIE W C, HUANG X L, et al. Review of small object detection algorithms based on deep learning[J]. Computer Engineering and Applications, 2023, 59(11): 16-27.
[6] 李东臣, 任俊杰, 张志文, 等. 基于高分辨率无人机影像的地震地表破裂半自动提取方法——以2021年M_S7. 4青海玛多地震为例[J]. 地震地质, 2022, 44(6): 1484-1502.
LI D C, REN J J, ZHANG Z W, et al. Research on semi-automatic extraction method of seismic surface ruptures based on high-resolution UAV image: taking the 2021 M_S7.4 Maduo earthquake in Qinghai province as an example[J]. Seismology and Geology, 2022, 44(6): 1484-1502.
[7] 刘谱, 张兴会, 张志利, 等. 从RCNN到YOLO的目标检测综述[C]//第十六届全国信号和智能信息处理与应用学术会议论文集, 2022: 16-23.
LIU P, ZHANG X H, ZHANG Z L, et al. Review of target detection ranging from RCNN to YOLO[C]//Proceedings of the 16th National Conference on Signal and Intelligent Information Processing and Application, 2022: 16-23.
[8] 张艳, 张明路, 吕晓玲, 等. 深度学习小目标检测算法研究综述[J]. 计算机工程与应用, 2022, 58(15): 1-17.
ZHANG Y, ZHANG M L, LYU X L, et al. Review of research on small target detection based on deep learning[J]. Computer Engineering and Applications, 2022, 58(15): 1-17.
[9] 王春梅, 刘欢. YOLOv8-VSC:一种轻量级的带钢表面缺陷检测算法[J]. 计算机科学与探索, 2024, 18(1): 151-160.
WANG C M, LIU H. YOLOv8-VSC: lightweight algorithm for strip surface defect detection[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 151-160.
[10] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
[11] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
[12] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems, 2015.
[13] LYU Z, JIN H, ZHEN T, et al. Small object recognition algorithm of grain pests based on ssd feature fusion[J]. IEEE Access, 2021, 9: 43202-43213.
[14] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2980-2988.
[15] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[16] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271.
[17] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[18] BOCHKOVSKIY A, WANG C Y, LIAO H. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[19] LI C Y, LI L, JIANG H L, et al. YOLOv6: a single-stage object detection framework for industrial applications[J]. arXiv:2209.02976, 2022.
[20] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7464-7475.
[21] 李红光, 于若男, 丁文锐. 基于深度学习的小目标检测研究进展[J]. 航空学报, 2021, 42(7): 107-125.
LI H G, YU R N, DING W R. Research development of small object traching based on deep learning[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7) : 107-125.
[22] CAO S, WANG T, LI T, et al. UAV small target detection algorithm based on an improved YOLOv5s model[J]. Journal of Visual Communication and Image Representation, 2023, 97: 103936.
[23] YI W, WANG B. Research on underwater small target detection algorithm based on improved YOLOv7[J]. IEEE Access, 2023, 11: 66818-66827.
[24] ZHANG Z. Drone-YOLO: an efficient neural network method for target detection in drone images[J]. Drones, 2023, 7(8): 526.
[25] LI Y, FAN Q, HUANG H, et al. A modified YOLOv8 detection network for UAV aerial image recognition[J]. Drones, 2023, 7(5): 304.
[26] 史涛, 崔杰, 李松. 优化改进YOLOv8实现实时无人机车辆检测的算法[J]. 计算机工程与应用, 2024, 60(9): 79-89.
SHI T, CUI J, LI S, et al. Algorithm for real-time vehicle detection from UAVs based on optimizing and improving YOLOv8[J]. Computer Engineering and Applications, 2024, 60(9): 79-89.
[27] 潘玮, 韦超, 钱春雨, 等. 面向无人机视角下小目标检测的YOLOv8s改进模型[J]. 计算机工程与应用, 2024, 60(9): 142-150.
PAN W, WEI C, QIAN C Y, et al. Improved YOLOv8s model for small object detection from perspective of drones[J]. Computer Engineering and Applications, 2024, 60(9): 142-150.
[28] 程期浩, 陈东方, 王晓峰. 基于NDM-YOLOv8的无人机图像小目标检测[J]. 计算机技术与发展, 2024, 34(9): 63-69.
CHENG Q H, CHEN D F, WANG X F. Small target detection in UAV images based on NDM-YOLOv8[J]. Computer Technology and Development, 2024, 34(9): 63-69.
[29] ZHU L, WANG X J, KE Z H, et al. BiFormer: vision transformer with bi-level routing attention[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 10323-10333.
[30] DAI J, QI H, XIONG Y, et al. Deformable convolutional networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), 2017: 764-773.
[31] KANG M, TING C M, TING F F, et al. ASF-YOLO: a novel YOLO model with attentional scale sequence fusion for cell instance segmentation[J]. arXiv:2312.06458, 2023.
[32] LIU W Z, LU H, FU H, et al. Learning to upsample by learning to sample[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023: 6027-6037.
[33] ZHANG Y F, REN W, ZHANG Z, et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146-157.
[34] TONG Z, CHEN Y, XU Z, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism[J]. arXiv:2301.10051, 2023.
[35] DU D W, ZHU P F, WEN L Y, et al. VisDrone-DET2019: the vision meets drone object detection in image challenge results[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshops. Piscataway: IEEE, 2019: 213-226.
[36] XIA G S, BAI X, DING J, et al. DOTA: a large-scale dataset for object detection in aerial images[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 3974-3983.
[37] WANG G, CHEN Y, AN P, et al. UAV-YOLOv8: a small-object-detection model based on improved YOLOv8 for UAV aerial photography scenarios[J]. Sensors, 2023, 23(16): 7190.
[38] ZHU X, HU H, LIN S, et al. Deformable ConvNets V2: more deformable, better results[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 9308-9316. |