[1] 胡皓, 郭放, 刘钊. 改进YOLOX-S模型的施工场景目标检测[J]. 计算机科学与探索, 2023, 17(5): 1089-1101.
HU H, GUO F, LIU Z. Object detection based on improved YOLOX-S model in construction sites[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(5): 1089-1101.
[2] 苏俊楷, 段先华, 叶赵兵. 改进YOLOv5算法的玉米病害检测研究[J]. 计算机科学与探索, 2023, 17(4): 933-941.
SU J K, DUAN X H, YE Z B. Research on corn disease detection based on improved YOLOv5 algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 933-941.
[3] 赵振兵, 王帆帆, 刘良帅, 等.基于注意力特征融合YOLOv5模型的无人机输电线路航拍图像金具检测方法[J].电测与仪表, 2023, 60(3):145-152.
ZHAO Z B, WANG F F, LIU L S, et al. Transmission line image fitting detection method based on attention feature fusion YOLOv5 model[J].Electrical Measurement & Instrumentation, 2023, 60(3):145-152.
[4] SUN Y M, CAO B, ZHU P, et al. Drone-based RGB-infrared cross-modality vehicle detection via uncertainty-aware learning[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(10): 6700-6713.
[5] SUN W, DAI L, ZHANG X, et al. RSOD: real-time small object detection algorithm in UAV-based traffic monitoring[J]. Applied Intelligence, 2022, 52: 8448-8463.
[6] IVERSEN N, SCHOFIELD O B, COUSIN L, et al. Design, integration and implementation of an intelligent and self-recharging drone system for autonomous power line inspection[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 2021: 4168-4175.
[7] 李坤亚, 欧鸥, 刘广滨, 等. 改进YOLOv5的遥感图像目标检测算法[J]. 计算机工程与应用, 2023, 59(9): 207-214.
LI K Y, OU O, LIU G B, et al. Target detection algorithm of remote sensing image based on improved YOLOv5[J]. Computer Engineering and Applications, 2023, 59(9): 207-214.
[8] LIU Y, SUN P, WERGELE N, et al. A survey and performance evaluation of deep learning methods for small object detection[J]. Expert Systems with Applications, 2021, 172: 114602.
[9] TIAN T, PAN Z, TAN X, et al. Arbitrary-oriented inshore ship detection based on multi-scale feature fusion and contextual pooling on rotation region proposals[J].Remote Sensing, 2020, 12(2): 339.
[10] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 2014: 580-587.
[11] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 2015:1440-1448.
[12] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.
[13] CAI Z W, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018: 6154-6162.
[14] LIU Y, YANG F, HU P. Small-object detection in UAV-captured images via multi-branch parallel feature pyramid networks[J].IEEE Access, 2020, 8: 145740-145750.
[15] 罗柏槐, 李扬, 林熙烨, 等.融合LoG特征的凸焊螺母检测算法[J].计算机工程与应用:1-12[2023-09-28].http://kns.cnki.net/kcms/detail/11.2127.TP.20230412.1317.010.html.
LUO B H, LI Y, LIN X Y, et al. Weld nut detection algorithm based on LoG features fusion[J/OL].Computer Engineering and Applications:1-12[2023-09-28].http://kns.cnki.net/kcms/detail/11.2127.TP.20230412.1317.010.html.
[16] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]//Proceedings of the 14th European Conference on Computer Vision (ECCV 2016), Amsterdam, The Netherlands, October 11-14, 2016: 21-37.
[17] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016: 779-788.
[18] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017: 6517-6525.
[19] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[20] BOCHKOVSKIY A, WANG C Y, LIAO H Y. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[21] CAO J, ZHUANG Y, WANG M, et al. Pedestrian detection algorithm based on ViBe and YOLO[C]//International Conference on Video and Image Processing, 2021:92-97.
[22] SAHIN O, OZER S.YOLODrone: improved YOLO architecture for object detection in drone images[C]//Proceedings of the 44th International Conference on Telecommunications and Signal Processing (TSP), Brno, Czech Republic, 2021: 361-365.
[23] CHEN Y, ZHENG W, ZHAO Y, et al. DW-YOLO: an efficient object detector for drones and self-driving vehicles[J]. Arabian Journal for Science and Engineering, 2022, 48: 1427-1436.
[24] BETTI A, TUCCI M. YOLO-S: a lightweight and accurate YOLO-like network for small target selection in aerial imagery[J]. Sensors, 2023, 23(4):1865.
[25] 张华卫, 张文飞, 蒋占军, 等.引入上下文信息和Attention Gate的GUS-YOLO遥感目标检测算法[J].计算机科学与探索, 2024, 18(2): 453-464.
ZHANG H W, ZHANG W F, JIANG Z J, et al.GUS-YOLO remote sensing target detection algorithm introducing context information and Attention Gate[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 453-464.
[26] 谢椿辉, 吴金明, 徐怀宇.改进YOLOv5的无人机影像小目标检测算法[J].计算机工程与应用, 2023, 59(9):198-206.
XIE C H, WU J M, XU H Y. Small object detection algorithm based on improved YOLOv5 in UAV image[J]. Computer Engineering and Applications, 2023, 59(9): 198-206.
[27] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018:7132-7141.
[28] ZHU L, LEE F, CAI J, et al. An improved feature pyramid network for object detection[J]. Neurocomputing, 2022, 483: 127-139.
[29] LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
[30] ZHENG C, ZHENG J, LI J. Real-time conveyor belt deviation detection algorithm based on multi-scale feature fusion network[J]. Algorithms, 2019, 12(10): 205.
[31] 胡昭华, 王莹.改进YOLOv5的交通标志检测算法[J].计算机工程与应用, 2023, 59(1):82-91.
HU Z H, WANG Y. Improved traffic sign detection algorithm for YOLOv5[J]. Computer Engineering and Applications, 2023, 59(1): 82-91.
[32] DU D, ZHU P, WEN L, et al. VisDrone-DET2019: the vision meets drone object detection in image challenge results[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Seoul, Korea (South), 2019: 213-226.
[33] LI C, LI L, JIANG H, et al. YOLOv6: a single-stage object detection framework for industrial applications[J]. arXiv:2209.02976, 2022.
[34] GE Z, LIU S, WANG F, et al. YOLOX: exceeding YOLO series in 2021[J]. arXiv:2107.08430, 2021.
[35] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision, Munich, Germany, 2018: 3-19.
[36] WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 2020: 11531-11539.
[37] HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, 2020: 13708-13717. |