[1] TERVEN J, CORDOVA-ESPARZA D. A comprehensive review of YOLO: from YOLOv1 to YOLOv8 and beyond[J]. arXiv:2304.00501, 2023.
[2] CHEN Y, YUAN X, WU R, et al. YOLO-MS: rethinking multi-scale representation learning for real-time object detection[J]. arXiv:2308.05480, 2023.
[3] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[4] CAI Z, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection [C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 6154-6162.
[5] 院老虎, 翟柯嘉, 张泽鹏, 等.基于模拟雾天遥感数据集的飞机目标检测研究[J].南京邮电大学学报 (自然科学版), 2021, 41(3): 77-84.
YUAN L H, ZHAI K J, ZHANG Z P. Aircraft target detection based on fog simulation remote sensing image dataset[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science Edition), 2021, 41(3): 77-84.
[6] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[7] MA Y, CAI J, TAO J, et al. Foggy image detection based on DehazeNet with improved SSD[C]//Proceedings of 2021 the 5th International Conference on Innovation in Artificial Intelligence, 2021: 82-86.
[8] HUANG S C, LE T H, JAW D W. DSNet: joint semantic learning for object detection in inclement weather conditions[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 43(8): 2623-2633.
[9] 院老虎, 常玉坤, 刘家夫.基于改进YOLOv5s的雾天场景车辆检测方法[J].郑州大学学报 (工学版), 2023, 44(3): 35-41.
YUAN L H, CHANG Y K, LIU J F. Vehicle detection method based on improved YOLOv5s in foggy scene[J]. Journal of Zhengzhou University (Engineering Science), 2023, 44(3): 35-41.
[10] 詹成祥, 孟庆岩, 安健健, 等.基于clear-SSD的单点多盒飞机目标检测天气适用性[J].科学技术与工程, 2020, 20(31): 12717-12723.
ZHAN C X, MENG Q Y, AN J J, et al. Weather applicability of single shot multibox aircraft target detection based on clear-SSD[J]. Science Technology and Engineering, 2020, 20(31): 12717-12723.
[11] 刘书刚, 张林坤, 杜昊东, 等.雾天条件下改进YOLOv4的目标检测[J].系统仿真学报, 2023, 35(8): 1681-1691.
LIU S G, ZHANG L K, DU H D. Improved object detection of YOLOv4 in foggy conditions[J].Journal of System Simulation, 2023, 35(8): 1681-1691.
[12] LI H, LI J, WEI H, et al. Slim-neck by GSConv: a better design paradigm of detector architectures for autonomous vehicles[J]. arXiv:2206.02424, 2022.
[13] ZHU X, LYU S, WANG X, et al.TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[J]. arXiv:2108.11539, 2021.
[14] ZHANG X, LIU C, YANG D, et al. RFAConv: innovating spatital attention and standard convolutional operation[J]. arXiv:2304.03198, 2023.
[15] SRINIVAS A, LIN T Y, PARMAR N, et al. Bottleneck transformers for visual recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 16519-16529.
[16] VASWANI A, RAMACHANDRAN P, SRINIVAS A, et al. Scaling local self-attention for parameter efficient visual backbones[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 12894-12904.
[17] ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 12993-13000.
[18] GEVORGYAN Z. SIoU loss: more powerful learning for bounding box regression[J]. arXiv:2205.12740, 2022.
[19] YU F, CHEN H, WANG X, et al. Bdd100k: a diverse driving dataset for heterogeneous multitask learning[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 2633-2642.
[20] LI B, REN W, FU D, et al. Benchmarking single-image dehazing and beyond[J]. IEEE Transactions on Image Processing, 2018, 28(1): 492-505.
[21] SAKARIDIS C, DAI D, VAN GOOL L. Semantic foggy scene understanding with synthetic data[J]. International Journal of Computer Vision, 2018, 126(9): 973-992. |