[1] 乔欢欢, 权恒友, 邱文利, 等. 改进YOLOv5s的交通标志识别算法[J]. 计算机系统应用, 2022, 31(12): 273-279.
QIAO H H, QUAN H Y, QIU W L, et al. Improved YOLOv5 algorithm for traffic sign recognition[J]. Computer Systems & Applications, 2022, 31(12): 273-279.
[2] 朱双东, 刘兰兰, 陆晓峰. 一种用于道路交通标志识别的颜色—几何模型[J]. 仪器仪表学报, 2007, 28(5): 956-960.
ZHU S D, LIU L L, LU X F. Color-geometric model for traffic sign recognition[J]. Chinese Journal of Scientific Instrument, 2007, 28(5): 956-960.
[3] 马永杰, 程时升, 马芸婷, 等. 多尺度特征融合与极限学习机结合的交通标志识别[J]. 液晶与显示, 2020, 35(6): 572-582.
MA Y J, CHENG S S, SHI Y T, et al. Traffic sign recognition based on multi-scale feature fusion and extreme learning machine[J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35 (6): 572-582.
[4] 王海, 王宽, 蔡英凤, 等. 基于改进级联卷积神经网络的交通标志识别[J]. 汽车工程, 2020, 42(9): 1256-1262.
WANG H, WANG K, CAI Y F, et al. Traffic sign recognition based on improved cascade convolution neural network[J]. Automotive Engineering, 2020, 42 (9): 1256-1262.
[5] 冷坤, 秦伦明, 王悉. 基于CA-ASFF-YOLOv4的交通标志识别研究[J]. 计算机工程与应用, 2023, 59(17): 169-177.
LENG K, QIN L M, WANG X. Research on traffic sign recognition based on CA-ASFF-YOLOv4[J]. Computer Engineering and Applications, 2023, 59(17): 169-177.
[6] 李娇, 葛艳, 刘玉鹏. 基于改进YOLOv5的昏暗小目标交通标志识别[J]. 计算机系统应用, 2023, 32(5): 172-179.
LI J, GE Y, LIU Y P. Traffic sign recognition for dim small targets based on improved YOLOv5[J]. Computer Systems & Applications, 2023, 32 (5): 172-179.
[7] ZHU Z, LIANG D, ZHANG S, et al. Traffic-sign detection and classification in the wild[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2110-2118.
[8] LI C, ZHOU A, YAO A. Omni-dimensional dynamic convolution[J]. arXiv:2209.07947, 2022.
[9] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[10] CHEN Y, DAI X, LIU M, et al. Dynamic convolution: attention over convolution kernels[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11030-11039.
[11] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
[12] WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020: 390-391.
[13] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7464-7475.
[14] SHI W, CABALLERO J, HUSZáR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 1874-1883.
[15] JIANG B, LUO R, MAO J, et al. Acquisition of localization confidence for accurate object detection[C]//Proceedings of the 2018 European Conference on Computer Vision (ECCV), 2018: 784-799.
[16] ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 12993-13000.
[17] LI C, LI L, JIANG H, et al. YOLOv6: a single-stage object detection framework for industrial applications[J]. arXiv:2209.02976, 2022.
[18] LIU W. ANGUELOV D, ERHAN D, et al. SSD: single shot multi-box detector[C]//Proceedings of the European Conference on Computer Vision. Amsterdam, The Netherland: Springer, 2016: 21-37.
[19] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[20] REDMON J, FARHADI A. YOLOv3: an incremental improve-ment[J]. arXiv:1804.02767, 2018.
[21] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[22] GE Z, LIU S, WANG F, et al. YOLOx: exceeding YOLO series in 2021[J]. arXiv:2107.08430, 2021.
[23] CHOLLET F. Xception:deep learning with depthwise separable convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017: 1251-1258.
[24] YANG B, BENDER G, LE Q V, et al. CondConv: conditionally parameterized convolutions for efficient inference[C]// Advances in Neural Information Processing Systems, 2019.
[25] DING X, ZHANG X, MA N, et al. RepVGG: making VGG-style convnets great again[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13733-13742.
[26] WANG W, DAI J, CHEN Z, et al. InternImage: exploring large-scale vision foundation models with deformable convolutions[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 14408-14419. |