[1] 胡亚轩, Akito Araya, 汪翠枝, 等. 地震地形变观测系统的组成发展及应用[J]. 地震科学进展, 2020, 50(10): 23-29.
HU Y X, AKITO A, WANG C Z, et al. The composition, development and application of crustal deformation observation system in earthquake monitoring and prediction[J]. Progress in Earthquake Sciences, 2020, 50(10): 23-29.
[2] 陈吉锋, 陈军辉, 应昶, 等. 无人职守地震台站远程监控系统的设计与实现[J].地震研究, 2012, 35(3): 429-433.
CHEN J F, CHEN J H, YING C, et al. Design and implementation of remote monitoring system for unattended seismic stations[J]. Journal of Seismological Research, 2012, 35(3): 429-433.
[3] 李松华, 瞿旻, 陆德铭, 等. 江苏省测震台站故障特征分析[J]. 国际地震动态, 2019(6): 20-26.
LI S H, QU M, LU D M, et al. Fault characteristics analysis of seismic stations in Jiangsu province[J]. Recent Developments in World Seismology, 2019(6): 20-26.
[4] BAGNALL A, ?LINES J, ?BOSTROM A, et al. The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances[J]. Data Mining and Knowledge Discovery, 2017, 31(3): 606-660.
[5] YUAN J D, LIN Q H, ZHANG W, et al. Locally slope-based dynamic time warping for time series classification[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management, 2019: 1713-1722.
[6] LINES J, TAYLOR S, BAGNALL A.Time series classification with HIVE-COTE: the hierarchical vote collective of transformation-based ensembles[J]. ACM Transactions on Knowledge Discovery from Data, 2018, 12(5): 1-35.
[7] RAHUL J, SORA M, SHARMA L D, et al. An improved cardiac arrhythmia classification using an RR interval-based approach[J]. Biocybernetics and Biomedical Engineering, 2021, 41(2): 656-666.
[8] ARUL M, KAREEM A. Data anomaly detection for structural health monitoring of bridges using shapelet transform[J]. Smart Structures and Systems, 2022, 29(1): 93-103.
[9] LI G, CHOI B, XU J, et al. Efficient shapelet discovery for time series classification[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(3):1149-1163.
[10] YE L, KEOGH E. Time series shapelets: a novel technique that allows accurate, interpretable and fast classification[J]. Data Mining and Knowledge Discovery, 2011, 22(1/2): 149-182.
[11] ZHANG Q, WU J, ZHANG P, et al. Salient subsequence learning for time series clustering[J] . IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(9):2193-2207.
[12] LI G, YAN W, WU Z. Discovering shapelets with key points in time series classification[J]. Expert Systems with Applications, 2019, 132:76-86.
[13] JI C, ZHAO C, PAN L, et al. A just-in-time shapelet selection service for online time series classification[J]. Computer Networks, 2019, 157(5): 89-98.
[14] KARLSSON I, PAPAPETROU P, BOSTROM H. Generalized random shapelet forests[J]. Data Mining and Knowledge Discovery, 2016, 30(5): 1053-1085.
[15] CHEN J H, WAN Y, WANG Y Y, et al. Learning-based shapelets discovery by feature selection for time series classification[J]. Applied?Intelligence, 2022, 52(8): 9460-9475.
[16] SHU W B, YAO Y Q, LYU S F, et al. Short isometric shapelet transform for binary time series classification[J]. Knowledge and Information Systems, 2021, 63(8): 2023-2051.
[17] BAGNALL A, LINES J, VICKERS W, et al. The UEA & UCR time series classification repository[EB/OL]. (2022).http://www.timeseriesclassification.com.
[18] JI C, ZHAO C, LIU S, et al. A fast shapelet selection algorithm for time series classification[J]. Computer Networks, 2019, 148: 231-240.
[19] 陆慧娟, 刘亚卿, 孟亚琼, 等. 面向基因数据分类的核主成分分析旋转森林算法[J]. 计算机科学与探索, 2017, 11(10): 1570-1578.
LU H J, LIU Y Q, MENG Y Q, et al. Classifier algorithm of genetic data based on kernel principal component analysis and rotation forest[J]. Journal of Frontiers of Computer Science and Technology, 2017, 11(10): 1570-1578.
[20] 朱紫纯, 吕盛坪, 廖鑫婷, 等.基于时间加权改进的LDTW算法[J].计算机应用研究, 2022, 39(4):998-1002.
ZHU Z C, LYU S P, LIAO X T, et al. Improved LDTW algorithm based on time-weighting[J]. Application Research of Computer, 2022, 39(4):998-1002.
[21] GRABOCKA J, WISTUBA M, SCHMIDT-THIEME L. Fast classification of univariate and multivariate time series through shapelet discovery[J]. Knowledge and Information Systems, 2016, 49(2): 429-454.
[22] FANG Z C, WANG P, WANG W. Efficient learning interpretable shapelets for accurate time series classification[C]//Proceedings of the 2018 IEEE 34th International Conference on Data Engineering, 2018. |