[1] 周浩轩, 温广瑞, 黄鑫, 等. 多尺度复合稀疏的齿轮箱复合故障诊断研究[J]. 振动. 测试与诊断, 2023, 43(2): 215-222.
ZHOU H X, WEN G R, HUANG X, et al. Fault diagnosis of gearbox compound fault based on multi-scale compound regularized convolutional sparse coding[J]. Journal of Vibration, Measurement & Diagnosis, 2023, 43(2): 215-222.
[2] 谢锋云, 董建坤, 王二化, 等. 基于双隐含层RWPSO-BP神经网络的齿轮箱故障诊断研究[J]. 现代制造工程, 2021(6): 155-160.
XIE F Y, DONG J K, WANG E H, et al. Research on gearbox fault diagnosis based on double hidden layer RWPSO-BP neural network[J]. Modern Manufacturing Engineering, 2021(6): 155-160.
[3] 王卫国, 孙磊. 基于EEMD-CWD的齿轮箱振动信号故障特征提取[J]. 兵工学报, 2014, 35(8): 1288-1294.
WANG W G, SUN L. Gearbox vibration signal fault feature extraction based on ensemble empirical mode decomposition and Choi-Williams distribution[J]. Journal of Military Engineering, 2014, 35(8): 1288-1294.
[4] 胡爱军, 马万里, 唐贵基. 基于集成经验模态分解和峭度准则的滚动轴承故障特征提取方法[J]. 中国电机工程报, 2012, 32(11): 106-111.
HU A J, MA W L, TANG G J. Rolling bearing fault feature extraction method based on ensemble empirical mode decomposition and kurtosis criterion [J]. China Journal of Electrical Engineering, 2012, 32(11): 106-111.
[5] CHAO L, FENG Z, YAN L. GPS/Pseudolites technology based on EMD-wavelet in the complex field conditions of mine[J]. Procedia Earth and Planetary Science, 2009(1): 1293-1300.
[6] 胡春生, 李国利, 赵勇, 等. 变工况滚动轴承故障诊断方法综述[J]. 计算机工程与应用, 2022, 58(18): 26-42.
HU C S, LI G L, ZHAO Y, et al. Summary of fault diagnosis methods for rolling bearings under variable working conditions[J]. Computer Engineering and Applications, 2022, 58(18): 26-42.
[7] WEN L, LI X, GAO L, et al. A new convolutional neural network-based data-driven fault diagnosis method[J]. IEEE Transactions on Industrial Electronics, 2018, 65(7): 5990-5998.
[8] 胡茑庆, 陈徽鹏, 程哲, 等. 基于经验模态分解和深度卷积神经网络的行星齿轮箱故障诊断方法[J]. 机械工程学报, 2019, 55(7): 9-18.
HU M Q, CHEN H P, CHENG Z, et al Fault diagnosis for planetary gearbox based on EMD and deep convolutional neural networks[J]. Journal of Mechanical Engineering, 2019, 55(7): 9-18.
[9] 蒲悦逸, 王文涵, 朱强, 等. 基于CNN-ResNet-LSTM模型的城市短时交通流量预测算法[J]. 北京邮电大学学报, 2020, 43(5): 9-14.
PU Y Y, WANG W H, ZHU Q, et al. Urban short-term traffic flow prediction algorithm based on CNN-ResNet-LSTM mode[J]. Journal of Beijing University of Posts and Telecommunications, 2020, 43(5): 9-14.
[10] 朱渔, 李丹, 李晓明, 等. 基于EEMD和BLSTM算法的齿轮泵行星轮典型故障诊断[J]. 机械设计与研究, 2022, 38(4): 198-201.
ZHU Y, LI D, LI X M, et al. Typical fault diagnosis of gear pump planetary wheel Based on EEMD and BLSTM[J]. Mechanical Design and Research, 2022, 38(4): 198-201.
[11] LV D, WANG H, CHE C. Multiscale convolutional neural network and decision fusion for rolling bearing fault diagnosis[J]. Industrial Lubrication and Tribology, 2021.
[12] 宋世林, 张学军. 脑电信号多特征融合与卷积神经网络算法研究[J]. 计算机工程与应用, 2024, 60(8): 148-155.
SONG S L, ZHANG X J. Algorithm research based on multi-feature fusion of EEG signals with convolutional neural networks[J]. Computer Engineering and Applications, 2024, 60(8): 148-155.
[13] SHAO S, MCALEER S, YAN R, et al. Highly accurate machine fault diagnosis using deep transfer learning[J]. IEEE Transactions on Industrial Informatics, 2019, 15(4): 2446-2455.
[14] WANG H, XU J, SUN C, et al. Intelligent fault diagnosis for planetary gearbox using time-frequency representation and deep reinforcement learning[J]. IEEE/ASME Transactions on Mechatronics, 2022, 27(2): 985-998.
[15] 杨枫. 基于深度学习的行星齿轮箱故障诊断研究[D]. 济南: 山东大学, 2020.
YANG F. Research on fault diagnosis of planetary gearboxes based on deep learning[D]. Jinan: Shandong University, 2020. |