[1] MTIBAA A, HARRAS K A, FAHIM A. Towards computational offloading in mobile device clouds[C]//Proceedings of the 2013 IEEE 5th International Conference on Cloud Computing Technology and Science. Piscataway: IEEE, 2014: 331-338.
[2] SHI W S, CAO J, ZHANG Q, et al. Edge computing: vision and challenges[J]. IEEE Internet of Things Journal, 2016, 3(5): 637-646.
[3] MAO Y Y, YOU C S, ZHANG J, et al. A survey on mobile edge computing: the communication perspective[J]. IEEE Communications Surveys & Tutorials, 2017, 19(4): 2322-2358.
[4] XU X L, HUANG Q H, YIN X C, et al. Intelligent offloading for collaborative smart city services in edge computing[J]. IEEE Internet of Things Journal, 2020, 7(9): 7919-7927.
[5] ZHAN C, HU H, LIU Z, et al. Multi-UAV-enabled mobile-edge computing for time-constrained IoT applications[J]. IEEE Internet of Things Journal, 2021, 8(20): 15553-15567.
[6] 祝淑琼, 徐青青, 李小涛, 等. 算力度量与任务调度: 物联网端侧设备策略研究[J]. 电信科学, 2024, 40(4): 122-138.
ZHU S Q, XU Q Q, LI X T, et al. Computational measurement and task scheduling: a study on IoT edge device strategies[J]. Telecommunications Science, 2024, 40(4): 122-138.
[7] ADEGBIJA T, ROGACS A, PATEL C, et al. Microprocessor optimizations for the Internet of Things: a survey[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018, 37(1): 7-20.
[8] THOMPSON N, SPANUTH S. The decline of computers as a general purpose technology: why deep learning and the end of Moore’s law are fragmenting computing[J]. Communications of the ACM, 2021, 64(3): 64-72.
[9] HUANG L, BI S Z, ZHANG Y A. Deep reinforcement learning for online computation offloading in wireless powered mobile-edge computing networks[J]. IEEE Transactions on Mobile Computing, 2020, 19(11): 2581-2593.
[10] HWANG J, NKENYEREYE L, SUNG N, et al. IoT service slicing and task offloading for edge computing[J]. IEEE Internet of Things Journal, 2021, 8(14): 11526-11547.
[11] XU Q C, SU Z, DAI M H, et al. APIS: privacy-preserving incentive for sensing task allocation in cloud and edge-cooperation mobile Internet of things with SDN[J]. IEEE Internet of Things Journal, 2020, 7(7): 5892-5905.
[12] ARMANDO N, Sá SILVA J, BOAVIDA F. An approach to the unified management of heterogeneous IoT environments[J]. IEEE Internet of Things Journal, 2021, 8(8): 6916-6927.
[13] YANG Y H, LONG C N, WU J, et al. D2D-enabled mobile-edge computation offloading for multiuser IoT network[J]. IEEE Internet of Things Journal, 2021, 8(16): 12490-12504.
[14] NGUYEN T H, PARK L. A survey on deep reinforcement learning-driven task offloading in aerial access networks[C]//Proceedings of the 2022 13th International Conference on Information and Communication Technology Convergence. Piscataway: IEEE, 2022: 822-827.
[15] SINGH P, DUTTA M, AGGARWAL N. A review of task scheduling based on meta-heuristics approach in cloud computing[J]. Knowledge and Information Systems, 2017, 52(1): 1-51.
[16] WANG C F, LIN Y K, CHEN J C. A cooperative image object recognition framework and task offloading optimiz-ation in edge computing[J]. Journal of Network and Computer Applications, 2022, 204: 103404.
[17] SUN Y L, WU Z Y, MENG K, et al. Vehicular task offloading and job scheduling method based on cloud-edge computing[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(12): 14651-14662.
[18] CHEN J, XING H L, XIAO Z W, et al. A DRL agent for jointly optimizing computation offloading and resource allocation in MEC[J]. IEEE Internet of Things Journal, 2021, 8(24): 17508-17524.
[19] YANG Y H. Elements of information theory[J]. Journal of the American Statistical Association, 2008, 103(481): 429.
[20] ABBAS N, SHARAFEDDINE S, MOURAD A, et al. Joint computing, communication and cost-aware task offloading in D2D-enabled Het-MEC[J]. Computer Networks, 2022, 209: 108900.
[21] MIETTINEN A P, NURMINEN J K. Energy efficiency of mobile clients in cloud computing[C]//Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing. New York: ACM, 2010: 4. |