[1] 钱志鸿, 王义君. 物联网技术与应用研究[J]. 电子学报, 2012, 40(5): 1023-1029.
QIAN Z H, WANG Y J. IoT technology and application[J]. Acta Electronica Sinica, 2012, 40(5): 1023-1029.
[2] 王基策, 李意莲, 贾岩, 等. 智能家居安全综述[J]. 计算机研究与发展, 2018, 55(10): 2111-2124.
WANG J C, LI Y L, JIA Y, et al. Survey of smart home security[J]. Journal of Computer Research and Development, 2018, 55(10): 2111-2124.
[3] 李钦豪, 张勇军, 陈佳琦, 等. 泛在电力物联网发展形态与挑战[J]. 电力系统自动化, 2020, 44(1): 13-22.
LI Q H, ZHANG Y J, CHEN J Q, et al. Development patterns and challenges of ubiquitous power Internet of things[J]. Automation of Electric Power Systems, 2020, 44(1): 13-22.
[4] 朱茂盛, 王宝晗, 康曼聪, 等. 智能物联网技术赋能算网一体数据库的效能优化[J]. 计算机研究与发展, 2024, 61(11): 2835-2845.
ZHU M S, WANG B H, KANG M C, et al. Efficiency optimization for computer network integrated database empowered by artificial intelligence of things technology[J]. Journal of Computer Research and Development, 2024, 61(11): 2835-2845.
[5] 罗小娟, 胡鹏昊. 基于深度学习的农场虫情检测算法研究及实现[J]. 华东理工大学学报(自然科学版), 2024, 50(5): 732-739.
LUO X J, HU P H. Research and implementation of farm insect detection algorithm based on deep learning[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2024, 50(5): 732-739.
[6] 曹慧娟, 余庚花, 陈志刚. 协作处理任务的多无人机辅助移动边缘计算[J]. 计算机工程与应用, 2024, 60(4): 298-305.
CAO H J, YU G H, CHEN Z G. Cooperative task processing in multi-UAV assisted mobile edge computing[J]. Computer Engineering and Applications, 2024, 60(4): 298-305.
[7] 黄泽丰, 李涛. RISE-D3QN驱动的多无人机数据采集路径规划[J]. 计算机工程与应用, 2024, 60(20): 328-338.
HUANG Z F, LI T. RISE-D3QN-based path planning for multi-UAV data collection[J]. Computer Engineering and Applications, 2024, 60(20): 328-338.
[8] 朱江, 肖津. 考虑无人机飞行时间的能耗与数据量联合优化[J]. 计算机工程与应用, 2024, 60(1): 271-280.
ZHU J, XIAO J. Joint optimization of energy consumption and data volume based on UAV flight time[J]. Computer Engineering and Applications, 2024, 60(1): 271-280.
[9] HUANG P Q, WANG Y, WANG K Z, et al. Differential evolution with a variable population size for deployment optimization in a UAV-assisted IoT data collection system[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2020, 4(3): 324-335.
[10] ZHANG X, CHANG Z, H?M?L?INEN T, et al. AoI-energy tradeoff for data collection in UAV-assisted wireless networks[J]. IEEE Transactions on Communications, 2024, 72(3): 1849-1861.
[11] WU Q Q, LIU Q, ZHU W L, et al. Energy efficient UAV-assisted IoT data collection: a graph-based deep reinforcement learning approach[J]. IEEE Transactions on Network and Service Management, 2024, 21(6): 6082-6094.
[12] WANG Y, GAO Z, ZHANG J, et al. Trajectory design for UAV-based Internet of things data collection: a deep reinforcement learning approach[J]. IEEE Internet of Things Journal, 2022, 9(5): 3899-3912.
[13] ZHANG H Y, LI B, RONG Y, et al. Joint optimization of transmit power and trajectory for UAV-enabled data collection with dynamic constraints[J]. IEEE Transactions on Communications, 2025. DOI:10.1109/TCOMM.2025.3543221.
[14] ZHANG Y Y, HUANG Y, HUANG C, et al. Joint optimization of deployment and flight planning of multi-UAVs for long-distance data collection from large-scale IoT devices[J]. IEEE Internet of Things Journal, 2024, 11(1): 791-804.
[15] DONIPATI M, JAISWAL A, HAZRA A, et al. Optimizing UAV-based data collection in IoT networks with dynamic service time and buffer-aware trajectory planning[J]. IEEE Transactions on Network and Service Management, 2025, 22(2): 1450-1460.
[16] PAN J N, LI Y, CHAI R, et al. Multiobjective trajectory planning for UAV-assisted IoT networks based on DRL approach[J]. IEEE Internet of Things Journal, 2025, 12(11): 15840-15852.
[17] GUO Y Y, XU G, ZHANG Z C, et al. Resource block-based co-design of trajectory and communication in UAV-assisted data collection networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(12): 21585-21596.
[18] CAI Y X, WEI Z Q, LI R D, et al. Joint trajectory and resource allocation design for energy-efficient secure UAV communication systems[J]. IEEE Transactions on Communications, 2020, 68(7): 4536-4553.
[19] WANG L Y, ZHANG H X, GUO S S, et al. Deployment and association of multiple UAVs in UAV-assisted cellular networks with the knowledge of statistical user position[J]. IEEE Transactions on Wireless Communications, 2022, 21(8): 6553-6567.
[20] MOZAFFARI M, SAAD W, BENNIS M, et al. Mobile unmanned aerial vehicles (UAVs) for energy-efficient Internet of things communications[J]. IEEE Transactions on Wireless Communications, 2017, 16(11): 7574-7589.
[21] LI X G, HAN S F, ZHAO L, et al. New dandelion algorithm optimizes extreme learning machine for biomedical classification problems[J]. Computational Intelligence and Neuroscience, 2017(1): 4523754.
[22] HAN S F, ZHU K, WANG R. Improvement of evolution process of dandelion algorithm with extreme learning machine for global optimization problems[J]. Expert Systems with Applications, 2021, 163: 113803.
[23] HAN S F, ZHU K. Fusion with distance-aware selection strategy for dandelion algorithm[J]. Knowledge-Based Systems, 2020, 205: 106282.
[24] ZHU H H, LIU G J, ZHOU M C, et al. Dandelion algorithm with probability-based mutation[J]. IEEE Access, 2019, 7: 97974-97985.
[25] HAN S F, ZHU K, ZHOU M C. Competition-driven dandelion algorithms with historical information feedback[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(2): 966-979.
[26] LIU X J, QIN X L. A probability-based core dandelion guided dandelion algorithm and application to traffic flow prediction[J]. Engineering Applications of Artificial Intelligence, 2020, 96: 103922.
[27] ZHU H H, LIU G J, ZHOU M C, et al. Optimizing weighted extreme learning machines for imbalanced classification and application to credit card fraud detection[J]. Neurocomputing, 2020, 407: 50-62.
[28] GAO S C, YU Y, WANG Y R, et al. Chaotic local search-based differential evolution algorithms for optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(6): 3954-3967.
[29] DONG W Y, ZHOU M C. A supervised learning and control method to improve particle swarm optimization algorithms[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 47(7): 1135-1148.
[30] YU Y, LEI Z Y, WANG Y R, et al. Improving dendritic neuron model with dynamic scale-free network-based differential evolution[J]. IEEE/CAA Journal of Automatica Sinica, 2022, 9(1): 99-110.
[31] ZHANG Y H, GONG Y J, GU T L, et al. Flexible genetic algorithm: a simple and generic approach to node placement problems[J]. Applied Soft Computing, 2017, 52: 457-470.
[32] AB WAHAB M N, NAZIR A, KHALIL A, et al. Improved genetic algorithm for mobile robot path planning in static environments[J]. Expert Systems with Applications, 2024, 249: 123762.
[33] OSABA E, CARBALLEDO R, LOPEZ-GARCIA P, et al. Comparison between golden ball meta-heuristic, evolutionary simulated annealing and tabu search for the traveling salesman problem[C]//Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion. New York: ACM, 2016: 1469-1470.
[34] GAO W. Modified ant colony optimization with improved tour construction and pheromone updating strategies for traveling salesman problem[J]. Soft Computing, 2021, 25(4): 3263-3289.
[35] WANG L J, CAI R Y, LIN M, et al. Enhanced list-based simulated annealing algorithm for large?scale traveling salesman problem[J]. IEEE Access, 2019, 7: 144366-144380.
[36] AL-BETAR M A, AWADALLAH M A, BRAIK M S, et al. Elk herd optimizer: a novel nature-inspired metaheuristic algorithm[J]. Artificial Intelligence Review, 2024, 57(3): 48.
[37] BRAIK M, AL-HIARY H, ALZOUBI H, et al. Tornado optimizer with Coriolis force: a novel bio-inspired meta-heuristic algorithm for solving engineering problems[J]. Artificial Intelligence Review, 2025, 58(4): 123. |