[1] AAZAM M, ZEADALLY S, HARRAS K A. Deploying fog computing in industrial Internet of things and industry 4.0[J]. IEEE Transactions on Industrial Informatics, 2018, 14(10): 4674-4682.
[2] QIU T, CHI J C, ZHOU X B, et al. Edge computing in industrial Internet of things: architecture, advances and challenges[J]. IEEE Communications Surveys & Tutorials, 2020, 22(4): 2462-2488.
[3] MUKHERJEE M, SHU L, WANG D. Survey of fog computing: fundamental, network applications, and research challenges[J]. IEEE Communications Surveys & Tutorials, 2018, 20(3): 1826-1857.
[4] HU W, LI X P, LI X. Hybrid cloud workflow scheduling method with privacy data[J]. IEEE Access, 2020, 8: 211540-211552.
[5] SHISHIDO H Y, ESTRELLA J C, TOLEDO C F M, et al. Optimizing security and cost of workflow execution using task annotation and genetic-based algorithm[J]. Computing, 2021, 103(6): 1281-1303.
[6] ABAZARI F, ANALOUI M, TAKABI H, et al. MOWS: multi-objective workflow scheduling in cloud computing based on heuristic algorithm[J]. Simulation Modelling Practice and Theory, 2019, 93: 119-132.
[7] MOHAMMADZADEH A, MASDARI M, GHAREHCHOPOGH F S, et al. A hybrid multi-objective metaheuristic optimization algorithm for scientific workflow scheduling[J]. Cluster Computing, 2021, 24(2): 1479-1503.
[8] AHMED O H, LU J, AHMED A M, et al. Scheduling of scientific workflows in multi-fog environments using Markov models and a hybrid salp swarm algorithm[J]. IEEE Access, 2020, 8: 189404-189422.
[9] MOKNI M, YASSA S, HAJLAOUI J E, et al. Cooperative agents-based approach for workflow scheduling on fog-cloud computing[J]. Journal of Ambient Intelligence and Humanized Computing, 2022, 13(10): 4719-4738.
[10] AHMED O H, LU J, XU Q, et al. Using differential evolution and moth-flame optimization for scientific workflow scheduling in fog computing[J]. Applied Soft Computing, 2021, 112: 107744.
[11] LIU M T, YU F R, TENG Y L, et al. Performance optimization for blockchain-enabled industrial Internet of things (IIoT) systems: a deep reinforcement learning approach[J]. IEEE Transactions on Industrial Informatics, 2019, 15(6): 3559-3570.
[12] WAN J F, LI J P, IMRAN M, et al. A blockchain-based solution for enhancing security and privacy in smart factory[J]. IEEE Transactions on Industrial Informatics, 2019, 15(6): 3652-3660.
[13] DAI Y Y, ZHANG K, MAHARJAN S, et al. Deep reinforcement learning for stochastic computation offloading in digital twin networks[J]. IEEE Transactions on Industrial Informatics, 2021, 17(7): 4968-4977.
[14] SREE T R. Role of fog-assisted industrial Internet of things: a systematic review[J]. Transactions on Emerging Telecommunications Technologies, 2022, 33(12): e4611.
[15] 田倬璟, 黄震春, 张益农. 云计算环境任务调度方法研究综述[J]. 计算机工程与应用, 2021, 57(2): 1-11.
TIAN Z J, HUANG Z C, ZHANG Y N. Review of task scheduling methods in cloud computing environment[J]. Computer Engineering and Applications, 2021, 57(2): 1-11.
[16] LAKHAN A, MASTOI Q U A, ALI DOOTIO M, et al. Hybrid workload enabled and secure healthcare monitoring sensing framework in distributed fog-cloud network[J]. Electronics, 2021, 10(16): 1974.
[17] 刘洋睿, 江凌云. 基于动态资源选择策略的微服务工作流调度算法[J]. 计算机工程与设计, 2023, 44(5): 1313-1319.
LIU Y R, JIANG L Y. Microservice workflow scheduling algorithm based on dynamic resource selection strategy[J]. Computer Engineering and Design, 2023, 44(5): 1313-1319.
[18] 王子健, 卢政昊, 潘纪奎, 等. 最后期限动态分配的三步云工作流调度算法[J]. 小型微型计算机系统, 2023, 44(2): 248-255.
WANG Z J, LU Z H, PAN J K, et al. Three-step cloud workflow scheduling algorithm based on dynamic deadline distribution[J]. Journal of Chinese Computer Systems, 2023, 44(2): 248-255.
[19] 杨乾龙, 江凌云. 基于机器学习的微服务负载均衡算法研究[J]. 计算机科学, 2023, 50(5): 313-321.
YANG Q L, JIANG L Y. Study on load balancing algorithm of microservices based on machine learning[J]. Computer Science, 2023, 50(5): 313-321.
[20] KHOSO F H, KEHAR A. Proposing a novel IoT framework by identifying security and privacy issues in fog cloud services network[J]. International Journal of Emerging Trends in Engineering Research, 2021, 9(5): 592-596.
[21] XUE J K, SHEN B. Dung beetle optimizer: a new meta-heuristic algorithm for global optimization[J]. The Journal of Supercomputing, 2023, 79(7): 7305-7336.
[22] HAI T, ZHOU J C, JAWAWI D, et al. Task scheduling in cloud environment: optimization, security prioritization and processor selection schemes[J]. Journal of Cloud Computing, 2023, 12(1): 15.
[23] MAHDAVI S, RAHNAMAYAN S, DEB K. Opposition based learning: a literature review[J]. Swarm and Evolutionary Computation, 2018, 39: 1-23.
[24] RANI R, GARG R. Power and temperature-aware workflow scheduling considering deadline constraint in cloud[J]. Arabian Journal for Science and Engineering, 2020, 45(12): 10775-10791.
[25] LIU X, FAN L M, XU J, et al. FogWorkflowSim: an automated simulation toolkit for workflow performance evaluation in fog computing[C]//Proceedings of the 2019 34th IEEE/ACM International Conference on Automated Software Engineering. Piscataway: IEEE, 2019: 1114-1117.
[26] HALMAN N, KOVALYOV M Y, QUILLIOT A. Max-max, max-min, min-max and min-min knapsack problems with a parametric constraint[J]. 4OR: A Quarterly Journal of Operations Research, 2023, 21(2): 235-246.
[27] TOOR W T, SEO J B, JIN H. Practical splitting algorithm for multi-channel slotted random access systems[J]. IEEE Transactions on Mobile Computing, 2020, 19(12): 2863-2873.
[28] ABED-ALGUNI B H, ALAWAD N A. Distributed grey wolf optimizer for scheduling of workflow applications in cloud environments[J]. Applied Soft Computing, 2021, 102: 107113. |