计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (10): 96-110.DOI: 10.3778/j.issn.1002-8331.2406-0383

• 理论与研发 • 上一篇    下一篇

蝴蝶搜索与动态反向学习柯西变异的白鲸优化算法

张莉,张小庆,孙民民,李娜,宋一佳,曾竣哲   

  1. 武汉轻工大学 数学与计算机学院,武汉 430023
  • 出版日期:2025-05-15 发布日期:2025-05-15

Beluga Whale Optimization Algorithm Based on Butterfly Search and Dynamic Inverse Learning Cauchy Variation

ZHANG Li, ZHANG Xiaoqing, SUN Minmin, LI Na, SONG Yijia, ZENG Junzhe   

  1. School of Mathematics & Computer Science, Wuhan Polytechnic University, Wuhan 430023, China
  • Online:2025-05-15 Published:2025-05-15

摘要: 针对白鲸优化算法(beluga whale optimization,BWO)收敛速度慢、无法跳出局部最优位置的不足,提出了一种基于蝴蝶搜索与动态反向学习柯西变异的改进白鲸优化算法(MY beluga whale optimization,MYBWO)。引入非线性平衡因子,更好地平衡算法的全局勘探和局部开发能力;在全局勘探阶段引入蝴蝶搜索机制,丰富种群多样性,提高最优解的搜索概率;在局部开发阶段融合动态反向学习和柯西变异策略,在扩大种群搜索范围的同时增强算法跳出局部最优的能力。通过选取寻优特征各异的CEC2005和CEC2019测试函数进行仿真实验,结果表明:与选取的几种对比算法相比,MYBWO算法寻优精度更高,收敛更快,有效解决了算法易停滞于局部最优的不足。为了验证改进算法的实用性,将MYBWO算法应用于优化LightGBM模型,建立新的空气质量预测模型,实验结果证明该模型的预测精度和稳定性得到了稳步提升。

关键词: 白鲸优化算法(BWO), 蝴蝶算法, 柯西变异, 动态反向学习, 轻量梯度提升机(LightGBM)

Abstract: Aiming at the shortcomings of the beluga whale optimization algorithm (BWO), which exhibits a slow convergence speed and is unable to escape the local optimum, an improved beluga whale optimization algorithm (MYBWO) based on butterfly search and dynamic reverse learning Cauchy variant is proposed. A nonlinear equilibrium factor is introduced to better balance the algorithm ability of global exploration and local exploitation. A butterfly search mechanism is introduced in the global exploration stage to enrich the diversity of populations and improve the search probability of the optimal solution. The dynamic opposite-learning and Cauchy variation strategies are integrated in the local exploitation stage to enhance the ability of the algorithm to jump out of the local optimum while expanding the population search scope. Simulation experiments are carried out using CEC2005 and CEC2019 test functions with different characteristics. The results show that compared with several selected comparison algorithms, MYBWO algorithm has higher optimization accuracy and faster convergence, which effectively solves the shortcomings of the algorithm that is easy to stagnate in the local optimum. In order to verify the practicality of the improved algorithm, MYBWO algorithm is used to optimize the LightGBM model to establish a new air quality prediction model. The experimental results prove that the prediction accuracy and stability of the model have been steadily improved.

Key words: beluga whale optimization (BWO), butterfly algorithm, Cauchy variation, dynamic opposite-learning, light gradient boosting machine (LightGBM)