[1] YIN Y K, JIANG Z H, LIU Y Z, et al. Factors affecting carbon emission trading price: evidence from China[J]. Emerging Markets Finance and Trade, 2019, 55(15): 3433-3451.
[2] 周坤, 高晓辉, 李廉水. 基于EMD-XGB-ELM和FSGM双元处理的碳排放交易价格集成预测[J]. 中国管理科学, 2024, 32(10): 325-334.
ZHOU K, GAO X H, LI L S. Integrated carbon emission trading price prediction based on EMD-XGB-ELM and FSGM from the perspective of dual processing[J]. Chinese Journal of Management Science, 2024, 32(10): 325-334.
[3] 秦全德, 黄兆荣, 黄凯珊. 一种基于局部回归的多尺度碳市场价格预测模型研究[J]. 运筹与管理, 2022, 31(1): 107-114.
QIN Q D, HUANG Z R, HUANG K S. A multi-scale carbon price forecasting model with local regression approach[J]. Operations Research and Management Science, 2022, 31(1): 107-114.
[4] 范丽伟, 董欢欢, 渐令. 基于滚动时间窗的碳市场价格分解集成预测研究[J]. 中国管理科学, 2023, 31(1): 277-286.
FAN L W, DONG H H, JIAN L. A decomposition ensemble model with sliding time window for forecasting carbon market prices[J]. Chinese Journal of Management Science, 2023, 31(1): 277-286.
[5] 张大斌, 张博婷, 凌立文, 等. 基于二次分解聚合策略的我国碳交易价格预测[J]. 系统科学与数学, 2022, 42(11): 3094-3106.
ZHANG D B, ZHANG B T, LING L W, et al. Carbon price forecasting based on secondary decomposition and aggregation strategy[J]. Journal of Systems Science and Mathematical Sciences, 2022, 42(11): 3094-3106.
[6] LIN B Q, XU B. A non-parametric analysis of the driving factors of China’s carbon prices[J]. Energy Economics, 2021, 104: 105684.
[7] 魏宇, 张佳豪, 陈晓丹. 基于DMS和DMA的我国碳排放权交易价格预测方法: 来自湖北碳市场的经验证据[J]. 系统工程, 2022, 40(4): 1-16.
WEI Y, ZHANG J H, CHEN X D. Forecasting China’s carbon trading price in a DMS and DMA framework: evidence from the Hubei carbon market[J]. Systems Engineering, 2022, 40(4): 1-16.
[8] 蒋锋, 彭紫君. 基于混沌PSO优化BP神经网络的碳价预测[J]. 统计与信息论坛, 2018, 33(5): 93-98.
JIANG F, PENG Z J. Forecasting of carbon price based on BP neural network optimized by chaotic PSO algorithm[J]. Journal of Statistics and Information, 2018, 33(5): 93-98.
[9] 崔焕影, 窦祥胜. 基于EMD-GA-BP与EMD-PSO-LSSVM的中国碳市场价格预测[J]. 运筹与管理, 2018, 27(7): 133-143.
CUI H Y, DOU X S. Carbon price forecasts in Chinese carbon trading market based on EMD-GA-BP and EMD-PSO-LSSVM[J]. Operations Research and Management Science, 2018, 27(7): 133-143.
[10] NGUYEN T H, SHIRAI K, VELCIN J. Sentiment analysis on social media for stock movement prediction[J]. Expert Systems with Applications, 2015, 42(24): 9603-9611.
[11] 刘金培, 郭艺, 陈华友, 等. 基于非结构数据流行学习的碳价格多尺度组合预测[J]. 控制与决策, 2019, 34(2): 279-286.
LIU J P, GUO Y, CHEN H Y, et al. Multi-scale combined forecast of carbon price based on manifold learning of unstructured data[J]. Control and Decision, 2019, 34(2): 279-286.
[12] 刘金培, 张了丹, 朱家明, 等. 非结构性数据驱动的混合分解集成碳交易价格组合预测[J]. 运筹与管理, 2023, 32(3): 149-154.
LIU J P, ZHANG L D, ZHU J M, et al. Unstructured data driven carbon price combined forecast based on hybrid decomposition-integration[J]. Operations Research and Management Science, 2023, 32(3): 149-154.
[13] PAN D, ZHANG C, ZHU D D, et al. Carbon price forecasting based on news text mining considering investor attention[J]. Environmental Science and Pollution Research International, 2023, 30(11): 28704-28717.
[14] LIU M Y, YING Q W. The role of online news sentiment in carbon price prediction of China’s carbon markets[J]. Environmental Science and Pollution Research, 2023, 30(14): 41379-41387.
[15] WANG P, LIU J P, TAO Z F, et al. A novel carbon price combination forecasting approach based on multi-source information fusion and hybrid multi-scale decomposition[J]. Engineering Applications of Artificial Intelligence, 2022, 114: 105172.
[16] LI J M, LIU D H. Carbon price forecasting based on secondary decomposition and feature screening[J]. Energy, 2023, 278: 127783.
[17] ZHANG X, ZHANG C C, WEI Z Q. Carbon price forecasting based on multi-resolution singular value decomposition and extreme learning machine optimized by the moth-flame optimization algorithm considering energy and economic factors[J]. Energies, 2019, 12(22): 4283.
[18] SUN W, WANG Y W. Factor analysis and carbon price prediction based on empirical mode decomposition and least squares support vector machine optimized by improved particle swarm optimization[J]. Carbon Management, 2020, 11(3): 315-329.
[19] ZHAO L T, MIAO J, QU S, et al. A multi-factor integrated model for carbon price forecasting: market interaction promoting carbon emission reduction[J]. Science of the Total Environment, 2021, 796: 149110.
[20] HUANG Y C, HE Z. Carbon price forecasting with optimization prediction method based on unstructured combination[J]. Science of the Total Environment, 2020, 725: 138350.
[21] CAO Y, ZHA D L, WANG Q W, et al. Probabilistic carbon price prediction with quantile temporal convolutional network considering uncertain factors[J]. Journal of Environmental Management, 2023, 342: 118137.
[22] LI D, REN X F. Carbon price prediction based on LsOALEO feature selection and time-delay least angle regression[J]. Journal of Cleaner Production, 2023, 416: 137853.
[23] 吕靖烨, 王腾飞. 我国碳排放权市场价格波动的长期记忆性和杠杆效应研究: 以湖北碳排放权交易中心为例[J]. 价格月刊, 2019(10): 29-36.
LYU J Y, WANG T F. Study on long-term memory and leverage effect of price fluctuations in China’s carbon emission right market: taking Hubei Carbon Emission Right Trading Center as an example[J]. Prices Monthly, 2019(10): 29-36.
[24] CUI S Z, WANG D J, YIN Y Q, et al. Carbon trading price prediction based on a two-stage heterogeneous ensemble method[J]. Annals of Operations Research, 2025, 345: 953-977.
[25] XU W J, WANG J J, ZHANG Y, et al. An optimized decomposition integration framework for carbon price prediction based on multi-factor two-stage feature dimension reduction[J]. Annals of Operations Research, 2025, 345: 1229-1266.
[26] 何芳, 王小川, 肖森予, 等. 基于MIV-BP型网络实验的房地产项目风险识别研究[J]. 运筹与管理, 2013, 22(2): 229-234.
HE F, WANG X C, XIAO S Y, et al. Research on risk recognition of real estate projects based on MIV-BP neural network test[J]. Operations Research and Management Science, 2013, 22(2): 229-234.
[27] 王小燕, 周思敏, 徐晓莉, 等. 基于图结构自适应Lasso的碳排放权价格影响因素分析[J]. 统计与信息论坛, 2022, 37(4): 73-83.
WANG X Y, ZHOU S M, XU X L, et al. Influencing factors analysis for the price of China’s regional carbon emissions based on graph-adaptive Lasso[J]. Journal of Statistics and Information, 2022, 37(4): 73-83.
[28] 郭文军. 中国区域碳排放权价格影响因素的研究: 基于自适应Lasso方法[J]. 中国人口·资源与环境, 2015, 25(S1): 305-310.
GUO W J. Factors impacting on the price of China’s regional carbon emissions based on adaptive Lasso method[J]. China Population, Resources and Environment, 2015, 25(S1): 305-310.
[29] 王倩, 高翠云. 中国试点碳市场间的溢出效应研究: 基于六元VAR-GARCH-BEKK模型与社会网络分析法[J]. 武汉大学学报 (哲学社会科学版), 2016, 69(6): 57-67.
WANG Q, GAO C Y. Research on the spillover effect of the pilot carbon trading markets in China: based on sextuple VAR-GARCH-BEKK model and social network analysis[J]. Wuhan University Journal (Philosophy & Social Sciences), 2016, 69(6): 57-67.
[30] 孙春. 中国碳市场与EU碳市场价格波动溢出效应研究[J]. 工业技术经济, 2018, 37(3): 97-105.
SUN C. Spillover effects of price fluctuation on China’s carbon market and EU carbon market[J]. Journal of Industrial Technological Economics, 2018, 37(3): 97-105.
[31] YUAN N N, YANG L. Asymmetric risk spillover between financial market uncertainty and the carbon market: a GAS-DCS-copula approach[J]. Journal of Cleaner Production, 2020, 259: 120750.
[32] WANG R, ZHAO X L, WU K R, et al. Examination of the transmission mechanism of energy prices influencing carbon prices: an analysis of mediating effects based on demand heterogeneity[J]. Environmental Science and Pollution Research, 2023, 30(21): 59567-59578.
[33] 王娜. 基于动态多元网络的中国碳价预测[J]. 统计研究, 2023, 40(1): 49-61.
WANG N. Carbon price prediction in China based on dynamic multivariate network[J]. Statistical Research, 2023, 40(1): 49-61.
[34] 易兰, 杨历, 李朝鹏, 等. 欧盟碳价影响因素研究及其对中国的启示[J]. 中国人口·资源与环境, 2017, 27(6): 42-48.
YI L, YANG L, LI Z P, et al. Impacts of multiple factors on EU carbon price and implications to China[J]. China Population, Resources and Environment, 2017, 27(6): 42-48.
[35] 杜子平, 刘富存. 我国区域碳排放权价格及其影响因素研究: 基于GA-BP-MIV模型的实证分析[J]. 价格理论与实践, 2018(6): 42-45.
DU Z P, LIU F C. Impacts on the price of regional carbon emissions based on GA-BP-MIV model[J]. Price: Theory & Practice, 2018(6): 42-45.
[36] 孙悦鹏, 孙延吉, 潘艳秋, 等. 基于BO-LSTM的低温甲醇洗净化气CO2含量预测[J]. 化工进展, 2025, 44(2): 688-697.
SUN Y P, SUN Y J, PAN Y Q, et al. Prediction of CO2 content in Rectisol purified gas based on BO-LSTM[J]. Chemical Industry and Engineering Progress, 2025, 44(2): 688-697. |