计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (10): 350-360.DOI: 10.3778/j.issn.1002-8331.2401-0109

• 工程与应用 • 上一篇    下一篇

融合多源信息的碳价时滞组合预测

邹艳,王淑平,李欣岷,龚科   

  1. 1.重庆师范大学 经济与管理学院,重庆 401331
    2.重庆交通大学 经济与管理学院,重庆 400074
  • 出版日期:2025-05-15 发布日期:2025-05-15

Carbon Price Forecasting Based on Multi-Source Information Fusion and Time-Delay Effect

ZOU Yan, WANG Shuping, LI Xinmin, GONG Ke   

  1. 1.School of Economics and Management, Chongqing Normal University, Chongqing 401331, China
    2.School of Economics and Management, Chongqing Jiaotong University, Chongqing 400074, China
  • Online:2025-05-15 Published:2025-05-15

摘要: 碳价是碳市场的核心要素,碳价波动受到众多因素及其时滞效应的影响。为精准预测全国碳市场碳排放配额(Chinese emission allowances,CEA)价格,从关联碳市场、经济发展、国外能源、国内能源和人民币汇率五个维度选取结构化影响因素,从经济政策、环境影响和用户意愿三个维度爬取来自百度搜索引擎的非结构化影响因素,然后引入MIV-BP模型筛选主要的影响因素,并基于最大信息系数(maximum information coefficient,MIC)对碳价以及多源影响因素进行时滞估计。在此基础上,构建融合多源信息的碳价时滞组合预测模型MIC-LSTM-BP,并和基准模型LSTM、BP、LSTM-BP以及时滞基准模型MIC-LSTM、MIC-BP、MIC-LSTM-GBDT进行对比分析,以验证新模型的有效性。结果表明,时滞信息的引入有助于提升模型的预测精度;相较于基准模型和时滞基准模型,MIC-LSTM-BP模型预测CEA价格精度最高,价格波动追随能力最好。

关键词: 全国碳市场, 多源信息, 影响因素筛选, 时滞估计, 组合预测, MIC-LSTM-BP模型

Abstract: The carbon price is the core element of the carbon market, and its fluctuations are influenced by numerous factors and their time-delay effects. To precisely forecast the price of Chinese emission allowances (CEA) in the national carbon market, structured influencing factors are selected from five dimensions: related carbon markets, economic development, foreign energy, domestic energy, and the RMB exchange rate. Unstructured influencing factors are crawled from three dimensions: economic policy, environmental impact, and user preference, using the Baidu search engine. The MIV-BP model is introduced to screen the main influencing factors and carbon price, and the time-delay of multi-source factors are estimated based on maximum information coefficient (MIC). On this basis, a time-delay combined prediction model for carbon price is constructed based on MIC, LSTM and BP. Compared with baseline models such as LSTM, BP, LSTM-BP, and time-delay baseline models MIC-LSTM, MIC-BP, and MIC-LSTM-GBDT, the effectiveness of the new model is verified. The results indicate that the introduction of time-delay information is helpful to improve the prediction accuracy of the model. Compared with the baseline and time-delay baseline models, the MIC-LSTM-BP model has the highest precision in forecasting CEA prices and the best capability to follow price volatility.

Key words: national carbon market, multi-source information, influence factor screening, time-delay estimation, combined prediction, MIC-LSTM-BP model