计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (10): 341-349.DOI: 10.3778/j.issn.1002-8331.2402-0102

• 工程与应用 • 上一篇    下一篇

IIoT环境下基于蜣螂优化的雾工作流调度算法

吴宏伟,江凌云   

  1. 1.南京邮电大学 通信与信息工程学院,南京 210003
    2.南京邮电大学 物联网研究院,南京 210003
  • 出版日期:2025-05-15 发布日期:2025-05-15

Fog Workflow Scheduling Algorithm Based on Dung Beetle Optimizer in IIoT Environment

WU Hongwei, JIANG Lingyun   

  1. 1.School of Communication and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
    2.Internet of Things Research Institute, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
  • Online:2025-05-15 Published:2025-05-15

摘要: 为了解决在工业物联网(industrial Internet of things,IIoT)环境下,现有的调度算法在调度工作流中对数据安全、响应时间有一定要求的任务所带来的完工时间上升、成本增加的问题,提出一种基于雾环境负载率而变化的任务调度策略,并使用改进的蜣螂优化算法对工作流调度问题进行求解。改进的算法使用HEFT(heterogeneous earliest finish time)算法对蜣螂种群进行初始化,降低了原始算法中随机性带来的影响。同时引入了镜面反射和反向学习思想,提高了算法的搜索性能。实验结果表明,该算法相比于其他一些传统的调度算法在完工时间与成本方面都有一定的性能提升。

关键词: 工作流调度, 蜣螂优化算法, HEFT算法, 反向学习, 调度算法, 雾计算, 工业物联网(IIoT)

Abstract: To solve the problem of increasing makespan and cost caused by existing scheduling algorithms for scheduling tasks in workflows with certain requirements on data security and response time in the IIoT (industrial Internet of things) environment, a task scheduling policy that changes based on the load rate of the fog environment is proposed, and the workflow scheduling problem is solved by using a dung beetle optimizer algorithm. The improved algorithm uses the HEFT (heterogeneous earliest finish time) algorithm to initialize the dung beetle population, which reduces the effect of randomness in the original algorithm. Meanwhile, the algorithm introduces the ideas of mirror reflection and opposition-based learning to improve the search performance of the algorithm. The experimental results show that the algorithm has some improvement in makespan and cost compared with some other traditional scheduling algorithms.

Key words: workflow scheduling, dung beetle optimizer algorithm, HEFT algorithm, opposition-based learning, scheduling algorithm, fog computing, industrial Internet of things (IIoT)