[1] YANG X S. Engineering optimization: an introduction with metaheuristic applications[M]. New Jersey: John Wiley & Sons, 2010.
[2] KOCHENDERFER M J, WHEELER T A. Algorithms for optimization[M]. Cambridge, MA: The MIT Press, 2019.
[3] 于颖, 李永生, 於孝春. 粒子群算法在工程优化设计中的应用[J]. 机械工程学报, 2008, 44(12): 226-231.
YU Y, LI Y S, YU X C. Application of particle swarm optimization in the engineering optimization design[J]. Chinese Journal of Mechanical Engineering, 2008, 44(12): 226-231.
[4] WIESELTHIER J E, NGUYEN G D, EPHREMIDES A, et al. Application of optimization techniques to a nonlinear problem of communication network design with nonlinear constraints[J]. IEEE Transactions on Automatic Control, 2002, 47(6): 1033-1038.
[5] 张靖一, 于永进, 李昱君. 基于改进灰狼算法的综合能源系统优化调度[J]. 科学技术与工程, 2021, 21(19): 8048-8056.
ZHANG J Y, YU Y J, LI Y J. Optimal scheduling of integrated energy system based on improved gray wolf algorithm[J]. Science Technology and Engineering, 2021, 21(19): 8048-8056.
[6] MOHAMMAD T R, VAHID A, MANIZHE Z. Hybrid path planning of robots through optimal control and PSO algorithm[C]//Proceedings of the 7th International Conference on Robotics and Mechatronics (ICRoM 2019), Tehran, Iran, Nov 20-21 2019. Piscataway, NJ: IEEE, 2019: 259-264.
[7] YUE W, XI Y, GUAN X H. A new searching approach using improved multi-ant colony scheme for multi-UAVs in unknown environments[J]. IEEE Access, 2019, 7(1): 161094-161102.
[8] BOYD S, VANDENBERGHE L. Convex optimization[M]. Cambridge: Cambridge University Press, 2004.
[9] TANG J, LIU G, PAN Q. A review on representative swarm intelligence algorithms for solving optimization problems: applications and trends[J]. IEEE/CAA Journal of Automatica Sinica, 2021, 8(10): 1627-1643.
[10] WONG W, MING C I. A review on metaheuristic algorithms: recent trends, benchmarking and applications[C]//Proceedings of the 2019 7th International Conference on Smart Computing & Communication, Sarawak, Malaysia, Jun 28-30, 2019. Piscataway, NJ: IEEE, 2019: 1-5.
[11] BISWAL S S, SWAIN D R, ROUT P K, et al. A comprehensive review of metaheuristic algorithms inspired by quantum mechanics[C]//Proceedings of the 2023 International Conference in Advances in Power, Signal, and Information Technology, Bhubaneswar, India, Jun 09-11, 2023. Piscataway, NJ: IEEE, 2023: 74-80.
[12] KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of the 1995 International Conference on Neural Networks, 1995: 1942-1948.
[13] MARCO D A, CHRISTIAN B B. Ant colony optimization theory: a survey[J]. Theoretical Computer Science, 2005, 344(2/3): 243-278.
[14] BASTURK B, KARABOGA D. An artificial bee colony (ABC) algorithm for numeric function optimization[C]//Proceedings of the IEEE Swarm Intelligence Symposium, Indianapolis, USA, May, 2006. Piscataway, NJ: IEEE, 2006: 12-14.
[15] YANG X S, DEB S. Cuckoo search via Lévy flights[C]// Proceedings of the 2009 World Congress on Nature & Biologically Inspired Computing, Coimbatore, India, 2009. Berlin, Heidelberg: Springer, 2009: 210-214.
[16] XUE J, SHEN B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34.
[17] ARORA S, SINGH S. Butterfly optimization algorithm: a novel approach for global optimization[J]. Soft Computing, 2019, 23(3): 715-734.
[18] MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61.
[19] GOLDBERG D E, HOLLAND J H. Genetic algorithms and machine learning[J]. Machine Learning, 1988, 3(2): 95-99.
[20] HANSEN N, KERN S. Evaluating the CMA evolution strategy on multimodal test functions[C]//Proceedings of the International Conference on Parallel Problem Solving from Nature. Berlin, Heidelberg: Springer, 2004.
[21] WOLPERT D H, MACREADY W G. No free lunch therems for optimization[J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 67-82.
[22] YANG X S. Nature-inspired mateheuristic algorithms: success and new challenges[J]. Journal of Computer Engineering & Information Technology, 2012, 1(1): 1-3.
[23] 龚旭. 基于蚁群算法的舰船逆变控制器功率PID控制研究[J]. 舰船科学技术, 2023, 45(20): 142-145.
GONG X. Research on power PID control of ship inverter controller based on ant colony algorithm[J]. Ship Science and Technology, 2023, 45(20): 142-145.
[24] XUE J, SHEN B. Dung beetle optimizer: a new metaheuristic algorithm for global optimization[J]. The Journal of Supercomputing, 2023, 79(7): 7305-7336.
[25] 王鑫鑫, 刘朝涛, 王正杰, 等. 基于改进DBO算法的非线性系统辨识[J]. 传感器世界, 2023, 29(12): 10-14.
WANG X X, LIU C T, WANG Z J, et al. Identification of nonlinear systems based on improved DBO algorithm[J]. Sensor World, 2023, 29(12): 10-14.
[26] 王文州, 魏文华, 卫德林. 基于EMD-DBO-GRU的降水预测模型研究及应用[J]. 甘肃水利水电技术, 2023, 59(9): 9-13.
WANG W Z, WEI W H, WEI D L. Research and application of precipitation prediction model based on EMD-DBO-GRU[J]. Gansu Water Resources and Hydropower Technology, 2023, 59(9): 9-13.
[27] 乔贵方, 聂新港, 付冬梅, 等. 基于DBO-PSO-BPNN的Stewart平台正运动学求解方法研究[J]. 仪表技术与传感器, 2023(12): 94-98.
QIAO G F, NIE X G, FU D M, et al. Research on forward kinematics solution method of stewart platform based on DBO-PSO-BPNN[J]. Instrument Technique and Sensor, 2023(12): 94-98.
[28] 王乐遥, 顾磊. 多策略融合改进的蜣螂优化算法[J]. 计算机系统应用, 2024, 33(2): 224-231.
WANG L Y, GU L. Improved dung beetle optimization algorithm with multi-strategy[J]. Computer Systems & Applications, 2024, 33(2): 224-231.
[29] 潘劲成, 李少波, 周鹏, 等. 改进正弦算法引导的蜣螂优化算法[J]. 计算机工程与应用, 2023, 59(22): 92-110.
PAN J C, LI S B, ZHOU P, et al. Dung beetle optimization algorithm guided by improved sine algorithm[J]. Computer Engineering and Applications, 2023, 59(22): 92-110.
[30] YU Y, GAO S, CHENG S, et al. CBSO: a memetic brain storm optimization with chaotic local search[J]. Memetic Computing, 2018(4): 353-367.
[31] TIZHOOSH H R. Opposition-based learning: a new scheme for machine intelligence[C]//Proceedings of the 2005 International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce, Vienna, Austria, Nov 28-30, 2005: 695-701.
[32] ABD E M, OLIVA D, XIONG S. An improved opposition-based sine cosine algorithm for global optimization[J]. Expert Systems with Applications, 2017, 90(30): 484-500.
[33] WANG H, WU Z, RAHNAMAYAN H, et al. Enhancing particle swarm optimization using generalized opposition-based learning[J]. Information Sciences, 2011, 181(20): 4699-4714.
[34] 张琳, 汪廷华, 周慧颖. 一种多策略改进的麻雀搜索算法[J]. 计算机工程与应用, 2022, 58(11): 133-140.
ZHANG L, WANG T H, ZHOU H Y. Multi-strategy improved sparrow search algorithm[J]. Computer Engineering and Applications, 2022, 58(11): 133-140.
[35] LONG W, JIAO J J, LIANG X M, et al. A random opposition-based learning grey wolf optimizer[J]. IEEE Access, 2019(7): 113810-113825.
[36] TANYILDIZI E, DEMIR G. Golden sine algorithm: a novel math-inspired algorithm[J]. Advances in Electrical & Computer Engineering, 2017, 17(2): 71-78.
[37] ATASHPAZ G E, LUCAS C. Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition[C]//Proceedings of the 2007 IEEE Congress on Evolutionary Computation, 2007: 4661-4667.
[38] HEIDARI A A, MIRJALILI S, FARIS H, et al. Harris hawks optimization: algorithm and applications[J]. Future Generation Computer Systems, 2019, 97: 849-872.
[39] ZOLFI K. Gold rush optimizer: a new population-based metaheuristic algorithm[J]. Operations Research and Decisions, 2023, 33(1): 113-150.
[40] BAI J F, LI Y F, ZHENG M P, et al. A sinh sosh optimizer[J]. Knowledge-Based Systems, 2023, 415: 1-65.
[41] WANG J, WANG W C, HU X X, et al. Black-winged kite algorithm: a nature-inspired meta-heuristic for solving benchmark functions and engineering problems[J]. Artificial Intelligence Review, 2024, 57: 98.
[42] LI K, HUANG H S, FU S W, et al. A multi-strategy enhanced northern goshawk optimization algorithm for global optimization and engineering design problems[J]. Computer Methods in Applied Mechanics and Engineering, 2023, 415: 116199.
[43] WANG K, GUO M, DAI C, et al. Information-decision searching algorithm: theory and applications for solving engineering optimization problems[J]. Information Sciences, 2022, 607: 1465-1531. |