[1] TERENTEV A, DOLZHENKO V, FEDOTOV A, et al. Current state of hyperspectral remote sensing for early plant disease detection: a review[J]. Sensors, 2022, 22(3): 757.
[2] 黄英来, 姜忠良. 改进残差网络甜瓜叶片病害的识别研究[J]. 计算机工程与应用, 2024, 60(15): 189-197.
HUANG Y L, JIANG Z L. Research on identification of melon leaf diseases with improved residual network[J]. Computer Engineering and Applications, 2024, 60(15): 189-197.
[3] XU W T, ZHANG G X, DUAN Y. Farmland detection in synthetic aperture radar images with texture signature[J]. Journal of Applied Remote Sensing, 2014, 8(1): 084997.
[4] SINGH V, SHARMA N, SINGH S. A review of imaging techniques for plant disease detection[J]. Artificial Intelligence in Agriculture, 2020, 4: 229-242.
[5] MAES W H, STEPPE K. Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture[J]. Trends in Plant Science, 2019, 24(2): 152-164.
[6] LI L Y, MU X H, MACFARLANE C, et al. A half-Gaussian fitting method for estimating fractional vegetation cover of corn crops using unmanned aerial vehicle images[J]. Agricultural and Forest Meteorology, 2018, 262: 379-390.
[7] ZHANG X, HAN L X, DONG Y Y, et al. A deep learning-based approach for automated yellow rust disease detection from high-resolution hyperspectral UAV images[J]. Remote Sensing, 2019, 11(13): 1554.
[8] HUANG Y N, QIAN Y R, WEI H Y, et al. A survey of deep learning-based object detection methods in crop counting[J]. Computers and Electronics in Agriculture, 2023, 215: 108425.
[9] MAO C Z, MENG W L, SHI C Y, et al. A crop disease image recognition algorithm based on feature extraction and image segmentation[J]. Traitement du Signal, 2020, 37(2): 341-346.
[10] LIU Z S, XIANG X Y, QIN J H, et al. Image recognition of citrus diseases based on deep learning[J]. Computers, Materials & Continua, 2020, 66(1): 457-466.
[11] APPE S N, ARULSELVI G, BALAJI G N. CAM-YOLO: tomato detection and classification based on improved YOLOv5 using combining attention mechanism[J]. PeerJ Computer Science, 2023, 9: e1463.
[12] 王会征, 孙良晨, 李新龙, 等. 基于改进YOLOv7-tiny的番茄叶片病虫害检测方法[J]. 农业工程学报, 2024, 40(10): 194-202.
WANG H Z, SUN L C, LI X L, et al. Detecting tomato leaf pests and diseases using improved YOLOv7-tiny[J]. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40(10): 194-202.
[13] 李好, 邱卫根, 张立臣. 改进ShuffleNet V2的轻量级农作物病害识别方法[J]. 计算机工程与应用, 2022, 58(12): 260-268.
LI H, QIU W G, ZHANG L C. Improved ShuffleNet V2 for lightweight crop disease identification[J]. Computer Engineering and Applications, 2022, 58(12): 260-268.
[14] OLSEN A, KONOVALOV D A, PHILIPPA B, et al. DeepWeeds: a multiclass weed species image dataset for deep learning[J]. Scientific Reports, 2019, 9: 2058.
[15] 杨英茹, 吴华瑞, 张燕, 等. 基于复杂环境的番茄叶部图像病虫害识别[J]. 中国农机化学报, 2021, 42(9): 177-186.
YANG Y R, WU H R, ZHANG Y, et al. Tomato disease recognition using leaf image based on complex environment[J]. Journal of Chinese Agricultural Mechanization, 2021, 42(9): 177-186.
[16] BUTERA L, FERRANTE A, JERMINI M, et al. Precise agriculture: effective deep learning strategies to detect pest insects[J]. IEEE/CAA Journal of Automatica Sinica, 2022, 9(2): 246-258.
[17] 廖娟, 刘凯旋, 杨玉青, 等. 基于RDN-YOLO的自然环境下水稻病害识别模型研究[J]. 农业机械学报, 2024, 55(8): 233-242.
LIAO J, LIU K X, YANG Y Q, et al. Rice disease recognition in natural environment based on RDN-YOLO[J]. Transactions of the Chinese Society for Agricultural Machinery, 2024, 55(8): 233-242.
[18] SHAO Y H, ZHANG D, CHU H Y, et al. A review of YOLO object detection based on deep learning[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3697-3708.
[19] DING X H, ZHANG X Y, MA N N, et al. RepVGG: making VGG-style ConvNets great again[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13728-13737.
[20] CHEN Y F, ZHANG C Y, CHEN B, et al. Accurate leukocyte detection based on deformable-DETR and multi-level feature fusion for aiding diagnosis of blood diseases[J]. Computers in Biology and Medicine, 2024, 170: 107917.
[21] HUANG L, LI W S, TAN Y J, et al. YOLOCS: object detection based on dense channel compression for feature spatial solidification[J]. Knowledge-Based Systems, 2025, 310: 113024.
[22] ZHENG Z H, WANG P, REN D W, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J]. IEEE Transactions on Cybernetics, 2022, 52(8): 8574-8586.
[23] ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12993-13000. .
[24] ZHANG Y F, REN W Q, ZHANG Z, et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146-157.
[25] GEVORGYAN Z. SIoU loss: more powerful learning for bounding box regression[J]. arXiv:2205.12740, 2022.
[26] TONG Z J, CHEN Y H, XU Z W, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism[J]. arXiv:2301.10051, 2023.
[27] CHEN P C, XU W C, ZHAN Y L, et al. Determining application volume of unmanned aerial spraying systems for cotton defoliation using remote sensing images[J]. Computers and Electronics in Agriculture, 2022, 196: 106912. |