[1] YANG G Z, BELLINGHAM J, DUPONT P E, et al. The grand challenges of science robotics[J]. Science Robotics, 2018, 3(14): 3800579.
[2] WENSING P M, POSA M, HU Y, et al. Optimization-based control for dynamic legged robots[J]. IEEE Transactions on Robotics, 2024, 40: 43-63.
[3] MIKOLAJCZYK T, MIKO?AJEWSKA E, AL-SHUKA H F N, et al. Recent advances in bipedal walking robots: review of gait, drive, sensors and control systems[J]. Sensors, 2022, 22(12): 4440.
[4] VASILEIOU C, SMYRLI A, DROGOSIS A, et al. Development of a passive biped robot digital twin using analysis, experiments, and a multibody simulation environment[J]. Mechanism and Machine Theory, 2021, 163: 104346.
[5] KIM D, BERSETH G, SCHWARTZ M, et al. Torque-based deep reinforcement learning for task-and-robot agnostic learning on bipedal robots using sim-to-real transfer[J]. IEEE Robotics and Automation Letters, 2023, 8(10): 6251-6258.
[6] CHIGNOLI M, KIM D, STANGER-JONES E, et al. The MIT humanoid robot: design, motion planning, and control for acrobatic behaviors[C]//Proceedings of the 2020 IEEE-RAS 20th International Conference on Humanoid Robots. Piscataway: IEEE, 2020: 1-8.
[7] HEREID A, COUSINEAU E A, HUBICKI C M, et al. 3D dynamic walking with underactuated humanoid robots: a direct collocation framework for optimizing hybrid zero dynamics[C]//Proceedings of the 2016 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2016: 1447-1454.
[8] LIU W B, WANG Z D, LIU X H, et al. A survey of deep neural network architectures and their applications[J]. Neurocomputing, 2017, 234: 11-26.
[9] ROSA N, LYNCH K M. A topological approach to gait generation for biped robots[J]. IEEE Transactions on Robotics, 2022, 38(2): 699-718.
[10] YAMAMOTO T, SUGIHARA T. Foot-guided control of a biped robot through ZMP manipulation[J]. Advanced Robotics, 2020, 34(21/22): 1472-1489.
[11] SUN P, GU Y F, MAO H Y, et al. Research on walking gait planning and simulation of a novel hybrid biped robot[J]. Biomimetics, 2023, 8(2): 258.
[12] 吴伟国, 高力扬. 使用零力矩点反馈的双足机器人惯性参数辨识[J]. 哈尔滨工业大学学报, 2021, 53(7): 20-26.
WU W G, GAO L Y. Inertia parameter identification of biped robot using ZMP feedback[J]. Journal of Harbin Institute of Technology, 2021, 53(7): 20-26.
[13] 韩连强, 陈学超, 余张国, 等. 面向离散地形的欠驱动双足机器人平衡控制方法[J]. 自动化学报, 2022, 48(9): 2164-2174.
HAN L Q, CHEN X C, YU Z G, et al. Balance control of underactuated biped robot for discrete terrain[J]. Acta Automatica Sinica, 2022, 48(9): 2164-2174.
[14] 顾岩秀, 华云松. 双足载人机器人的结构设计及高度优化[J]. 电子科技, 2016, 29(2): 77-80.
GU Y X, HUA Y S. Structural design and height optimization of manned biped robot[J]. Electronic Science and Technology, 2016, 29(2): 77-80.
[15] 崔谦. 一种自动控制技术的双足机器人跟踪误差在线修正方法[J]. 自动化与仪器仪表, 2015(9): 97-99.
CUI Q. On-line correction method of tracking error for a two legged robot with automatic control technology[J]. Automation & Instrumentation, 2015(9): 97-99.
[16] 柳秀山, 张琴, 程骏, 等. 仿生双足机器人步态轨迹自适应控制方法研究[J]. 计算机仿真, 2021, 38(3): 298-302.
LIU X S, ZHANG Q, CHENG J, et al. Research on adaptive control method of gait trajectory of bionic biped robot[J]. Computer Simulation, 2021, 38(3): 298-302.
[17] 颜东金, 闫新超. 双足机器人行走步态轨迹规划方法研究综述[J]. 中国科技期刊数据库 工业A, 2023(3): 176-179.
YAN D J, YAN X C. A review on the planning methods of walking gait trajectory of biped robot[J]. China Science and Technology Journal Database-Industry A, 2023(3): 176-179.
[18] TASSA Y, EREZ T, TODOROV E. Synthesis and stabilization of complex behaviors through online trajectory optimization[C]//Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2012: 4906-4913.
[19] SZABO R. Design approach for evolutionary techniques using genetic algorithms: application for a biped robot to learn to walk and rise after a fall[J]. Mathematics, 2023, 11(13): 2931.
[20] KRAUHAUSEN I, GRIGGS S, MCCULLOCH I, et al. Bio-inspired multimodal learning with organic neuromorphic electronics for behavioral conditioning in robotics[J]. Nature Communications, 2024, 15: 4765.
[21] YAZDANI M, SALARIEH H, FOUMANI M S. Bio-inspired decentralized architecture for walking of a 5-link biped robot with compliant knee joints[J]. International Journal of Control, Automation and Systems, 2018, 16(6): 2935-2947.
[22] JUTHAREE W, KAEWKAMNERDPONG B, MANEEWARN T. Joint reconfiguration after failure for performing emblematic gestures in humanoid receptionist robot[J]. Sensors, 2023, 23(22): 9277.
[23] YANG Z G, BI L Z, CHI W M, et al. Brain-controlled multi-robot at servo-control level based on nonlinear model predictive control[J]. Complex System Modeling and Simulation, 2022, 2(4): 307-321.
[24] CHEN C Y, HUANG P H, CHOU W C. A critical review and improvement method on biped robot[J].International Journal of Innovative Computing, Information and Control,2011,7(9):5245-5254.
[25] PANDEY K K, SHAH T, YADRAVE S, et al. Design and development of an autonomous robot assistant[M]//Intelligent manufacturing systems in industry 4.0. Singapore: Springer Nature Singapore, 2023: 381-389.
[26] BOSE D, MOHAN K, CS M, et al. Review of autonomous campus and tour guiding robots with navigation techniques[J]. Australian Journal of Mechanical Engineering, 2023, 21(5): 1580-1590. |