[1] DE ARAUJO A C, ETEMAD A. End-to-end prediction of parcel delivery time with deep learning for smart-city applications[J]. IEEE Internet of Things Journal, 2021, 8(23): 17043-17056.
[2] KANG P, SONG G, XU M, et al. Low-carbon pathways for the booming express delivery sector in China[J]. Nature Communications, 2021, 12(1): 450.
[3] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017.
[4] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[J]. arXiv:1609.02907, 2016.
[5] ZHANG Y, LIU Y H, LI G J, et al. Route prediction for instant delivery[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2019, 3(3): 1-25.
[6] CHEN T Q, GUESTRIN C. XGBoost: a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 785-794.
[7] WEN H M, LIN Y F, WU F, et al. Package pick-up route prediction via modeling couriers’ spatial-temporal behaviors[C]//Proceedings of the 2021 IEEE 37th International Conference on Data Engineering. Piscataway: IEEE, 2021: 2141-2146.
[8] WEN H M, LIN Y F, MAO X W, et al. Graph2Route: a dyna-mic spatial-temporal graph neural network for pick-up and delivery route prediction[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2022: 4143-4152.
[9] MAO X W, WEN H M, ZHANG H R, et al. DRL4Route: a deep reinforcement learning framework for pick-up and delivery route prediction[C]//Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2023: 4628-4637.
[10] WU F, WU L X. DeepETA: a spatial-temporal sequential neural network model for estimating time of arrival in package delivery system[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2019: 774-781.
[11] WANG Z, FU K, YE J P. Learning to estimate the travel time[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2018: 858-866.
[12] LI Y G, FU K, WANG Z, et al. Multi-task representation learning for travel time estimation[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2018: 1695-1704.
[13] HU J L, YANG B, GUO C J, et al. Stochastic origin-destination matrix forecasting using dual-stage graph convolutional, recurrent neural networks[C]//Proceedings of the 2020 IEEE 36th International Conference on Data Engineering. Piscataway: IEEE, 2020: 1417-1428.
[14] WANG D, ZHANG J B, CAO W, et al. When will you arrive? estimating travel time based on deep neural networks[C]// Proceedings of the AAAI Conference on Artificial Intelligence, 2018.
[15] QIU J, DU L, ZHANG D W, et al. Nei-TTE: intelligent traffic time estimation based on fine-grained time derivation of road segments for smart city[J]. IEEE Transactions on Industrial Informatics, 2019, 16(4): 2659-2666.
[16] FU K, MENG F L, YE J P, et al. CompactETA: a fast inference system for travel time prediction[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2020: 3337-3345.
[17] GAO C L, ZHANG F, WU G Q, et al. A deep learning method for route and time prediction in food delivery service[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. New York: ACM, 2021: 2879-2889.
[18] WEN H M, LIN Y F, WU F, et al. Enough waiting for the couriers: learning to estimate package pick-up arrival time from couriers’ spatial-temporal behaviors[J]. ACM Transactions on Intelligent Systems and Technology, 2023, 14(3): 1-22.
[19] CAI T Y, WAN H Y, WU F, et al. M2G4RTP: a multi-level and multi-task graph model for instant-logistics route and time joint prediction[C]//Proceedings of the 2023 IEEE 39th International Conference on Data Engineering. Piscataway: IEEE, 2023: 3296-3308.
[20] GRAVES A. Long short-term memory[M]//Supervised sequence labelling with recurrent neural networks. Berlin, Heidelberg: Springer, 2012: 37-45.
[21] POPESCU M C, BALAS V E, PERESCU-POPESCU L, et al. Multilayer perceptron and neural networks[J]. WSEAS Transactions on Circuits and Systems, 2009, 8(7): 579-588.
[22] CIPOLLA R, GAL Y, KENDALL A. Multi-task learning using uncertainty to weigh losses for scene geometry and semantics[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7482-7491.
[23] WU L, WEN H, HU H, et al. LaDe: the first comprehensive last-mile express dataset from industry[C]//Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2024: 5991-6002.
[24] KE G, MENG Q, FINLEY T, et al. LightGBM: a highly effi-cient gradient boosting decision tree[C]//Advances in Neural Information Processing Systems, 2017. |