计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (15): 318-328.DOI: 10.3778/j.issn.1002-8331.2411-0084

• 工程与应用 • 上一篇    下一篇

基于HDNNF-CAF的短时交通流预测研究

王庆荣,慕壮壮,朱昌锋,何润田   

  1. 1.兰州交通大学 电子与信息工程学院,兰州 730070 
    2.兰州交通大学 交通运输学院,兰州 730070
  • 出版日期:2025-08-01 发布日期:2025-07-31

Research on Short-Term Traffic Flow Prediction Based on HDNNF-CAF

WANG Qingrong, MU Zhuangzhuang, ZHU Changfeng, HE Runtian   

  1. 1.School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
    2.School of Traffic and Transportation, Lanzhou Jiaotong University, Lanzhou 730070, China
  • Online:2025-08-01 Published:2025-07-31

摘要: 短时交通流预测在智能交通系统中扮演重要的角色。针对交通流复杂多变的时空特征、非平稳性及外部因素引发的数据异常,提出考虑异常因素的混合深度神经网络预测模型(hybrid deep neural network forecasting model considering anomalous factors,HDNNF-CAF)。该模型将邻接矩阵、交通流量矩阵及交通流其他参数矩阵结合异常数据处理理论,进行数据预处理和异常数据识别。建立异常数据时空特征提取理论,捕获异常数据时空信息;利用变分模态分解(VMD)降低交通流数据非平稳性,并提出图卷积网络(GCN)优化Informer理论分别对各个子序列进行特征提取,以组合生成交通流时空信息。最终结合异常数据与交通流数据的时空信息生成预测结果。在真实数据集PeMS04上进行验证,实验结果表明,HDNNF-CAF能够有效识别交通流异常数据,提高预测精度,优于一些现有方法。

关键词: 短时交通流, 预测, 深度学习, 图卷积网络, 时空信息

Abstract: Short-term traffic flow prediction is essential in intelligent transportation systems. To address the spatiotemporal complexity, non-stationarity, and anomalies caused by external factors in traffic flow data, a hybrid deep neural network forecasting model considering anomalous factors (HDNNF-CAF) is proposed. This model combines adjacency matrices, traffic flow matrices, and other traffic parameters with anomaly detection techniques for data preprocessing and anomaly identification. It establishes a spatiotemporal feature extraction framework to capture the characteristics of anomalous data. Variational mode decomposition (VMD) is applied to mitigate data non-stationarity, and a graph convolutional network (GCN) is integrated with the Informer model to extract features from decomposed sub-sequences, constructing comprehensive spatiotemporal traffic information. The final prediction results are obtained by merging the spatiotemporal features of anomalous and normal traffic data. Validation on the PeMS04 dataset shows that HDNNF-CAF effectively identifies anomalies and improves prediction accuracy, outperforming existing methods.

Key words: short-term traffic flow, prediction, deep learning, graph convolutional network, spatiotemporal Information