[1] MEHRABIAN A. Communication without words[M]//Communication theory. London: Routledge, 2017: 193-200.
[2] HOSSAIN S, UMER S, ROUT R K, et al. Fine-grained image analysis for facial expression recognition using deep convolutional neural networks with bilinear pooling[J]. Applied Soft Computing, 2023, 134: 109997.
[3] JIANG M, YIN S L. Facial expression recognition based on convolutional block attention module and multi-feature fusion[J]. International Journal of Computational Vision and Robotics, 2023, 13(1): 21.
[4] LIU S, HUANG S C, FU W N, et al. A descriptive human visual cognitive strategy using graph neural network for facial expression recognition[J]. International Journal of Machine Learning and Cybernetics, 2024, 15(1): 19-35.
[5] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: Transformers for image recognition at scale[J]. arXiv:2010.11929, 2020.
[6] MA F, SUN B, LI S. Robust facial expression recognition with convolutional visual transformers[J]. arXiv:2103.16854, 2021.
[7] WANG K, PENG X J, YANG J F, et al. Region attention networks for pose and occlusion robust facial expression recognition[J]. IEEE Transactions on Image Processing, 2020.
[8] CHEN S K, WANG J F, CHEN Y D, et al. Label distribution learning on auxiliary label space graphs for facial expression recognition[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 13981-13990.
[9] FARD A P, MAHOOR M H. Ad-corre: adaptive correlation-based loss for facial expression recognition in the wild[J]. IEEE Access, 2022, 10: 26756-26768.
[10] XUE F L, WANG Q C, GUO G D. TransFER: learning relation-aware facial expression representations with transformers[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 3581-3590.
[11] 罗思诗, 李茂军, 陈满. 多尺度融合注意力机制的人脸表情识别网络[J]. 计算机工程与应用, 2023, 59(1): 199-206.
LUO S S, LI M J, CHEN M. Multi-scale integrated attention mechanism for facial expression recognition network[J]. Computer Engineering and Applications, 2023, 59(1): 199-206.
[12] 程卫月, 张雪琴, 林克正, 等. 融合全局与局部特征的深度卷积神经网络算法[J]. 计算机科学与探索, 2022, 16(5): 1146-1154.
CHENG W Y, ZHANG X Q, LIN K Z, et al. Deep convolutional neural network algorithm fusing global and local features[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1146-1154.
[13] HASANI B, MAHOOR M H. Facial expression recognition using enhanced deep 3D convolutional neural networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2017: 2278-2288.
[14] QIU Y H, WAN Y. Facial expression recognition based on landmarks[C]//Proceedings of the 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference. Piscataway: IEEE, 2019: 1356-1360.
[15] ZHENG C, MENDIETA M, CHEN C. POSTER: a pyramid cross-fusion transformer network for facial expression recognition[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision Workshops. Piscataway: IEEE, 2023: 3138-3147.
[16] ZHANG Q, YANG Y B. Rest: an efficient transformer for visual recognition[C]//Advances in Neural Information Processing Systems, 2021: 15475-15485.
[17] DENG J K, GUO J, XUE N N, et al. ArcFace: additive angular margin loss for deep face recognition[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 4685-4694.
[18] LI S, DENG W H, DU J P. Reliable crowdsourcing and deep locality-preserving learning for expression recognition in the wild[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2584-2593.
[19] MOLLAHOSSEINI A, HASANI B, MAHOOR M H. AffectNet: a database for facial expression, valence, and arousal computing in the wild[J]. IEEE Transactions on Affective Computing, 2019, 10(1): 18-31.
[20] WANG K, PENG X J, YANG J F, et al. Suppressing uncertainties for large-scale facial expression recognition[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 6896-6905.
[21] SHE J H, HU Y B, SHI H L, et al. Dive into ambiguity: latent distribution mining and pairwise uncertainty estimation for facial expression recognition[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 6244-6253.
[22] ZHAO Z, LIU Q, ZHOU F. Robust lightweight facial expression recognition network with label distribution training[C]//Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 3510-3519.
[23] ZHANG Y, WANG C, LING X, et al. Learn from all: erasing attention consistency for noisy label facial expression recognition[C]//Proceedings of the 17th European Conference on Computer Vision. Berlin: Springer, 2022: 418-434.
[24] WEN Z, LIN W, WANG T, et al. Distract your attention: multi-head cross attention network for facial expression recognition[J]. Biomimetics, 2023, 8(2): 199.
[25] LIU C, HIROTA K, DAI Y. Patch attention convolutional vision transformer for facial expression recognition with occlusion[J]. Information Sciences, 2023, 619: 781-794. |