[1] 张阳婷, 黄德启, 王东伟, 等. 基于深度学习的目标检测算法研究与应用综述[J]. 计算机工程与应用, 2023, 59(18): 1-13.
ZHANG Y T, HUANG D Q, WANG D W, et al. Review on research and application of deep learning-based target detection algorithms[J]. Computer Engineering and Applications, 2023, 59(18): 1-13.
[2] ZHENG Q H, SAPONARA S, TIAN X Y, et al. A real-time constellation image classification method of wireless communication signals based on the lightweight network MobileViT[J]. Cognitive Neurodynamics, 2024, 18(2): 659-671.
[3] ZHENG Q H, TIAN X Y, YU Z G, et al. MobileRaT: a lightweight radio transformer method for automatic modulation classification in drone communication systems[J]. Drones, 2023, 7(10): 596.
[4] 金寿祥, 周宏平, 姜洪喆, 等. 采摘机器人视觉系统研究进展[J]. 江苏农业学报, 2023, 39(2): 582-595.
JIN S X, ZHOU H P, JIANG H Z, et al. Research progress on visual system of picking robot[J]. Jiangsu Journal of Agricultural Sciences, 2023, 39(2): 582-595.
[5] 周飞, 郭杜杜, 王洋, 等. 基于改进YOLOv8的交通监控车辆检测算法[J]. 计算机工程与应用, 2024, 60(6): 110-120.
ZHOU F, GUO D D, WANG Y, et al. Vehicle detection algorithm based on improved YOLOv8 in traffic surveillance[J]. Computer Engineering and Applications, 2024, 60(6): 110-120.
[6] 张剑锐, 魏霞, 张林鍹, 等. 改进YOLO v7的绝缘子检测与定位[J]. 计算机工程与应用, 2024, 60(4): 183-191.
ZHANG J R, WEI X, ZHANG L X, et al. Improving detection and positioning of insulators in YOLO v7[J]. Computer Engineering and Applications, 2024, 60(4): 183-191.
[7] 李文强, 陈莉, 谢旭, 等. 改进YOLOv5的X光图像违禁品检测算法[J]. 计算机工程与应用, 2023, 59(16): 170-176.
LI W Q, CHEN L, XIE X, et al. Algorithm for detecting prohibited items in X-ray images based on improved YOLOv5[J]. Computer Engineering and Applications, 2023, 59(16): 170-176.
[8] 邵延华, 张铎, 楚红雨, 等. 基于深度学习的YOLO目标检测综述[J]. 电子与信息学报, 2022, 44(10): 3697-3708.
SHAO Y H, ZHANG D, CHU H Y, et al. A review of YOLO object detection based on deep learning[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3697-3708.
[9] TARVAINEN A, VALPOLA H. Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results[C]//Advances in Neural Information Processing Systems, 2017.
[10] DENG J H, LI W, CHEN Y H, et al. Unbiased mean teacher for cross-domain object detection[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 4091-4101.
[11] LIU Y Y, TIAN Y, CHEN Y H, et al. Perturbed and strict mean teachers for semi-supervised semantic segmentation[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 4258-4267.
[12] LIU Y C, MA C Y, HE Z J, et al. Unbiased teacher for semi-supervised object detection[J]. arXiv:2102.09480, 2021.
[13] 李庆耀. 基于半监督学习的玉米雄穗计数和抽穗状态识别方法研究[D]. 泰安: 山东农业大学, 2023.
LI Q Y. Research on the method of maize tassel counting and heading state recognition based on semi-supervised learning[D]. Tai’an: Shandong Agricultural University, 2023.
[14] 吕佳, 李帅军, 曾梦瑶, 等. 基于半监督SPM-YOLOv5的套袋柑橘检测算法[J]. 农业工程学报, 2022, 38(18): 204-211.
LYU J, LI S J, ZENG M Y, et al. Detecting bagged citrus using a semi-supervised SPM-YOLOv5[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(18): 204-211.
[15] LIN S D, LI J Y, HUANG D Y, et al. Early detection of rice blast using a semi-supervised contrastive unpaired translation iterative network based on UAV images[J]. Plants, 2023, 12(21): 3675.
[16] HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network[J]. arXiv:1503.02531, 2015.
[17] SOHN K, BERTHELOT D, LI C L, et al. FixMatch: simplifying semi-supervised learning with consistency and confidence[C]//Advances in Neural Information Processing Systems, 2020: 596-608.
[18] PELáEZ-VEGAS A, MESEJO P, LUENGO J. A survey on semi-supervised semantic segmentation[J]. arXiv:2302.09899, 2023.
[19] BODLA N, SINGH B, CHELLAPPA R, et al. Soft-NMS: improving object detection with one line of code[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 5561-5569.
[20] CHEN B B, CHEN W J, YANG S C, et al. Label matching semi-supervised object detection[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 14361-14370.
[21] ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12993-13000.
[22] ZHAO J F, ALMODFER R, WU X Y, et al. A dataset of pomegranate growth stages for machine learning-based monitoring and analysis[J]. Data in Brief, 2023, 50: 109468.
[23] LIU Y C, MA C Y, KIRA Z. Unbiased teacher v2: semi-supervised object detection for anchor-free and anchor-based detectors[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 9809-9818.
[24] CHEN B H, LI P Y, CHEN X, et al. Dense learning based semi-supervised object detection[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 4805-4814.
[25] XU M D, ZHANG Z, HU H, et al. End-to-end semi-supervised object detection with soft teacher[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 3040-3049.
[26] TIAN Z, SHEN C H, CHEN H, et al. FCOS: a simple and strong anchor-free object detector[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(4): 1922-1933.
[27] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[28] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[J]. International Journal of Computer Vision, 2020, 128(2): 336-359. |