[1] 毕鹏程, 罗健欣, 陈卫卫. 轻量化卷积神经网络技术研究[J]. 计算机工程与应用, 2019, 55(16): 25-35.
BI P C, LUO J X, CHEN W W. Research on lightweight convolutional neural network technology[J]. Computer Engineering and Applications, 2019, 55(16): 25-35.
[2] 杜睿山, 陈雨欣, 孟令东, 等. 融合改进残差网络和注意力的黏土矿物图像分类[J]. 计算机工程与应用, 2024, 60(23): 333-339.
DU R S, CHEN Y X, MENG L D, et al. Clay mineral image classification based on improved residual network and attention[J]. Computer Engineering and Applications, 2024, 60(23): 333-339.
[3] 李文静, 白静, 彭斌, 等. 图卷积神经网络及其在图像识别领域的应用综述[J]. 计算机工程与应用, 2023, 59(22): 15-35.
LI W J, BAI J, PENG B, et al. Graph convolutional neural network and its application in image recognition[J]. Computer Engineering and Applications, 2023, 59(22): 15-35.
[4] ZHENG Q H, ZHAO P H, ZHANG D L, et al. MR-DCAE: manifold regularization-based deep convolutional autoencoder for unauthorized broadcasting identification[J]. International Journal of Intelligent Systems, 2021, 36(12): 7204-7238.
[5] 马金林, 张裕, 马自萍, 等. 轻量化神经网络卷积设计研究进展[J]. 计算机科学与探索, 2022, 16(3): 512-528.
MA J L, ZHANG Y, MA Z P, et al. Research progress of lightweight neural network convolution design[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(3): 512-528.
[6] LIU Y, WANG X Y, ZHANG Z L, et al. LOSN: lightweight ore sorting networks for edge device environment[J]. Engineering Applications of Artificial Intelligence, 2023, 123: 106191.
[7] 杨文龙, 郭明钰. 轻量级注意力X射线矿石检测方法[J]. 电子测量技术, 2022, 45(18): 71-79.
YANG W L, GUO M Y. Lightweight attention parallel X-ray ore detection algorithm[J]. Electronic Measurement Technology, 2022, 45(18): 71-79.
[8] SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 4510-4520.
[9] ZHANG Y, CHENG L, PENG Y T, et al. Faster OreFSDet: a lightweight and effective few-shot object detector for ore images[J]. Pattern Recognition, 2023, 141: 109664.
[10] 程卫月, 张雪琴, 林克正, 等. 融合全局与局部特征的深度卷积神经网络算法[J]. 计算机科学与探索, 2022, 16(5): 1146-1154.
CHENG W Y, ZHANG X Q, LIN K Z, et al. Deep convolutional neural network algorithm fusing global and local features[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1146-1154.
[11] 彭斌, 白静, 李文静, 等. 面向图像分类的视觉Transformer研究进展[J]. 计算机科学与探索, 2024, 18(2): 320-344.
PENG B, BAI J, LI W J, et al. Survey on visual transformer for image classification[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 320-344.
[12] 李建, 杜建强, 朱彦陈, 等. 基于Transformer的目标检测算法综述[J]. 计算机工程与应用, 2023, 59(10): 48-64.
LI J, DU J Q, ZHU Y C, et al. Survey of transformer-based object detection algorithms[J]. Computer Engineering and Applications, 2023, 59(10): 48-64.
[13] 徐光宪, 冯春, 马飞. 基于UNet的医学图像分割综述[J]. 计算机科学与探索, 2023, 17(8): 1776-1792.
XU G X, FENG C, MA F. Review of medical image segmentation based on UNet[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8): 1776-1792.
[14] ZHENG Q H, ZHAO P H, WANG H J, et al. Fine-grained modulation classification using multi-scale radio transformer with dual-channel representation[J]. IEEE Communications Letters, 2022, 26(6): 1298-1302.
[15] TANG X X, WANG X L, YAN N, et al. A new ore image segmentation method based on Swin-Unet[C]//Proceedings of the 2022 China Automation Congress. Piscataway: IEEE, 2022: 1681-1686.
[16] 汤翔中, 高丙朋. 融合注意力空洞卷积和Transformer的矿石图像分割[J]. 科学技术与工程, 2023, 23(16): 6974-6982.
TANG X Z, GAO B P. Ore image segmentation based on attention hole convolution and transformer[J]. Science Technology and Engineering, 2023, 23(16): 6974-6982.
[17] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023.
[18] HOWARD A, SANDLER M, CHU G, et al. Searching for MobileNetV3[J]. arXiv:1905.02244, 2019.
[19] GRAHAM B, EL-NOUBY A, TOUVRON H, et al. LeViT: a vision transformer in ConvNet’s clothing for faster inference[J]. arXiv:2104.01136, 2021.
[20] MA N N, ZHANG X Y, ZHENG H T, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design[J]. arXiv:1807.11164, 2018.
[21] MEHTA S, RASTEGARI M. Separable self-attention for mobile vision transformers[J]. arXiv:2206.02680, 2022.
[22] PENG Z L, HUANG W, GU S Z, et al. Conformer: local features coupling global representations for visual recognition[J]. arXiv:2105.03889, 2021.
[23] WADEKAR S N, CHAURASIA A. MobileViTv3: mobile-friendly vision transformer with simple and effective fusion of local, global and input features[J]. arXiv:2209.15159, 2022.
[24] CHEN J R, KAO S H, HE H, et al. Run, don’t walk: chasing higher FLOPS for faster neural networks[J]. arXiv:2303. 03667, 2023.
[25] HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[J]. arXiv:1704.04861, 2017.
[26] ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[J]. arXiv:1707.01083, 2017.
[27] LIU C X, ZOPH B, NEUMANN M, et al. Progressive neural architecture search[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 19-35.
[28] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[J]. arXiv:1512.03385, 2015.
[29] HUANG G, LIU S C, VAN DER MAATEN L, et al. CondenseNet: an efficient DenseNet using learned group convolutions[J]. arXiv:1711.09224, 2017.
[30] MAAZ M, SHAKER A, CHOLAKKAL H, et al. EdgeNeXt: efficiently amalgamated CNN-transformer architecture for mobile vision applications[J]. arXiv:2206.10589, 2022.
[31] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[J]. arXiv:2010.11929, 2020.
[32] GAO S H, CHENG M M, ZHAO K, et al. Res2Net: a new multi-scale backbone architecture[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(2): 652-662.
[33] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[J]. arXiv:2103.02907, 2021.
[34] CHEN X N, LIANG C, HUANG D, et al. Symbolic discovery of optimization algorithms[J]. arXiv:2302.06675, 2023.
[35] RADOSAVOVIC I, KOSARAJU R P, GIRSHICK R, et al. Designing network design spaces[J]. arXiv:2003.13678, 2020.
[36] WOO S, DEBNATH S, HU R H, et al. ConvNeXt V2: co-designing and scaling ConvNets with masked autoencoders[J]. arXiv:2301.00808, 2023.
[37] PAN J T, BULAT A, TAN F W, et al. EdgeViTs: competing light-weight CNNs on mobile devices with vision transformers[J]. arXiv:2205.03436, 2022.
[38] HUANG Z P, ZHANG Z Z, LAN C L, et al. Adaptive frequency filters as efficient global token mixers[J]. arXiv:2307.14008, 2023. |