[1] 沈衡, 王琳, 李骞, 等. 番茄风味和功能性成分研究进展[J]. 园艺学报, 2024, 51(2): 423-438.
SHEN H, WANG L, LI Q, et al. Analyzing flavor and functional components in tomatoes:a review[J]. Acta Horticulturae Sinica, 2024, 51(2): 423-438.
[2] 陈林蔚. 区块链技术在智慧农业领域中的应用[J]. 江苏农业学报, 2023, 39(6): 1358-1365.
CHEN L W. The application of blockchain technology in the field of smart agriculture[J]. Jiangsu Journal of Agricultural Sciences, 2023, 39(6): 1358-1365.
[3] 鲍秀兰, 马志涛, 马萧杰, 等. 丘陵果园自然环境下柑橘采摘机器人设计与试验[J]. 农业机械学报, 2024, 55(4): 124-135.
BAO X L, MA Z T, MA X J, et al. Design and experiment of citrus picking robot in hilly orchard natural environment[J]. Transactions of the Chinese Society for Agricultural Machinery, 2024, 55(4): 124-135.
[4] 张永宏, 李宇超, 董天天, 等. 非结构化环境下番茄采摘机器人目标识别与检测[J]. 中国农机化学报, 2024, 45(4): 205-213.
ZHANG Y H, LI Y C, DONG T T, et al. Target identification and detection for tomato harvesting robot in unstructured environments[J]. Journal of Chinese Agricultural Mechanization, 2024, 45(4): 205-213.
[5] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
[6] FU L, FENG Y, MAJEED Y, et al. Kiwifruit detection in field images using Faster R-CNN with ZFNet[J]. IFAC-PapersOnLine, 2018, 51(17): 45-50.
[7] 王梁, 侯义锋, 贺杰. 基于Mask-RCNN的自然场景下油茶果目标识别与检测[J]. 中国农机化学报, 2022, 43(12): 148-154.
WANG L, HOU Y F, HE J. Target recognition and detection of Camellia oleifera fruit in natural scene based on Mask-RCNN[J]. Journal of Chinese Agricultural Mechanization, 2022, 43(12): 148-154.
[8] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[9] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision, 2016: 21-37.
[10] 高新阳, 魏晟, 温志庆, 等. 改进YOLOv5轻量级网络的柑橘检测方法[J]. 计算机工程与应用, 2023, 59(11): 212-221.
GAO X Y, WEI S, WEN Z Q, et al. Citrus detection method based on improved YOLOv5 lightweight network[J]. Computer Engineering and Applications, 2023, 59(11): 212-221.
[11] 赵鹏飞, 钱孟波, 周凯琪, 等. 改进YOLOv7-Tiny农田环境下甜椒果实检测[J]. 计算机工程与应用, 2023, 59(15): 329-340.
ZHAO P F, QIAN M B, ZHOU K Q, et al. Improvement of sweet pepper fruit detection in YOLOv7-tiny farming environment[J]. Computer Engineering and Applications, 2023, 59(15): 329-340.
[12] WANG J, CHEN Y, DONG Z, et al. Improved YOLOv5 network for real-time multi-scale traffic sign detection[J]. Neural Computing and Applications, 2023, 35(10): 7853-7865.
[13] ZHANG Y, LI K, LI K, et al. Image super-resolution using very deep residual channel attention networks[C]//Proceedings of the European Conference on Computer Vision, 2018: 286-301.
[14] HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13713-13722.
[15] DAI J, QI H, XIONG Y, et al. Deformable convolutional networks[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 764-773.
[16] CHEN J, KAO S, HE H, et al. Run, don’t walk: chasing higher FLOPS for faster neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 12021-12031.
[17] LI H, LI J, WEI H, et al. Slim-neck by GSConv: a better design paradigm of detector architectures for autonomous vehicles[J]. arXiv:2206.02424, 2022.
[18] TONG Z, CHEN Y, XU Z, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism[J]. arXiv:2301.10051, 2023.
[19] 胡奕帆, 赵贤林, 李佩娟, 等. 基于改进YOLOv5的自然环境下番茄果实检测[J]. 中国农机化学报, 2023, 44(10): 231-237.
HU Y F, ZHAO X L, LI P J, et al. Tomato fruit detection in natural environment based on improved YOLOv5[J]. Journal of Chinese Agricultural Mechanization, 2023, 44(10): 231-237.
[20] 张俊宁, 毕泽洋, 闫英, 等. 基于注意力机制与改进YOLO的温室番茄快速识别[J]. 农业机械学报, 2023, 54(5): 236-243.
ZHANG J N, BI Z Y, YAN Y, et al. Fast recognition of greenhouse tomato targets based on attention mechanism and improved YOLO[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(5): 236-243.
[21] 李慧琴, 宋赵铭, 刘存祥, 等. 基于YOLOv8n的番茄果实检测模型改进[J/OL]. 河南农业大学学报: 1-14[2024-06-27]. https://doi.org/10.16445/j.cnki.1000-2340.20240511.002.
LI H Q, SONG Z M, LIU C X, et al. Improvement of tomato fruit detection model based on YOLOv8n[J/OL]. Journal of Hennan Agricultural University: 1-14[2024-06-27]. https://doi.org/10.16445/j.cnki.1000-2340.20240511.002. |