Computer Engineering and Applications ›› 2024, Vol. 60 ›› Issue (22): 304-313.DOI: 10.3778/j.issn.1002-8331.2401-0030

• Big Data and Cloud Computing • Previous Articles     Next Articles

Duration-Aware for Short Video Sequential Recommendation

WANG Hang, YIN Ling, SHI Zhicai, HUANG Bo, GAO Zhirong   

  1. 1.School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
    2.School of Computer Science, South-Central Minzu University, Wuhan 430074, China
  • Online:2024-11-15 Published:2024-11-14

基于时长感知的短视频序列推荐

王航,尹玲,史志才,黄勃,高志荣   

  1. 1.上海工程技术大学 电子电气工程学院,上海 201620
    2.中南民族大学 计算机科学学院,武汉 430074

Abstract: Addressing the issues of data sparsity in click data, noise in watch duration feedback, and bias in short video sequential recommendation, a duration-aware for short video sequential recommendation model (DASR) is proposed. This model effectively alleviates the data sparsity issue by deeply modeling user watch duration feedback. Additionally, an unbiased multi-semantic watch duration feedback label generation method is proposed. This method combines the [K]-nearest neighbors algorithm and percentile analysis of training data to dynamically generate label thresholds adapted to different video durations, effectively eliminating the impact of video duration bias. Furthermore, a noise extraction method based on a strong-weak attention network is introduced, accurately extracting positive and negative interest signals from the watch duration, thus addressing the noise issue in watch duration feedback. Extensive experiments on open-source datasets demonstrate that this model outperforms other mainstream methods on multiple evaluation metrics.

Key words: data sparsity, sequential recommendation, attention network, duration bias, dynamic thresholding

摘要: 针对短视频序列推荐中存在的点击数据稀疏性、观看时长反馈中的噪声以及偏差问题,提出了一种基于时长感知的短视频序列推荐模型(duration-aware for short video sequential recommendation,DASR)。该模型通过对用户观看时长反馈的深入建模,有效地缓解了数据稀疏性问题。提出了一种无偏差的多语义观看时长反馈标签生成方法。该方法结合了[K]近邻算法和训练数据的百分位数分析,动态生成适应不同视频时长的标签阈值,有效地消除了视频时长偏差的影响。提出了一种基于强弱注意力网络的噪声提取方法,从观看时长中准确地提取正向和负向兴趣信号,从而解决了观看时长反馈中存在的噪声。在开源的短视频数据集上进行了广泛实验,结果表明该模型在多个评价指标上优于其他主流方法。

关键词: 数据稀疏性, 序列推荐, 注意力网络, 时长偏差, 动态阈值