[1] 张树杰. PostgreSQL技术内幕: 查询优化深度探索[M]. 北京: 电子工业出版社, 2018: 3-32.
ZHANG S J. PostgreSQL technical insider: in-depth exploration of query optimization[M]. Beijing: Publishing House of Electronic Industry, 2018: 3-32.
[2] AHMAD M. Query interactions in database systems[D]. Ontario, Canada: University of Waterloo, 2013: 1-6.
[3] 张锦文, 牛保宁, 李爱萍. 查询交互响应时间预测模型的采样优化[J]. 小型微型计算机系统, 2015, 36(10): 2240-2244.
ZHANG J W, NIU B N, LI A P. An optimized sampling method for query interaction aware respond time modeling[J]. Journal of Chinese Computer Systems, 2015, 36(10): 2240-2244.
[4] LAN F P, ZHANG J W, NIU B N. Predicting response time of concurrent queries with similarity models[J]. Big Data Research, 2021, 25(4): 100207.
[5] ZHANG J W, NIU B N. A clustering-based sampling method for building query response time models[J]. International Journal on Computer Systems Science & Engineering, 2017, 32(4): 319-331.
[6] 裴泽锋, 牛保宁, 张锦文, 等. 并行查询下查询执行计划的选择[J]. 计算机应用, 2020, 40(2): 420-425.
PEI Z F, NIU B N, ZHANG J W, et al. The choice of query execution plan under concurrent query[J]. Journal of Computer Applications, 2020, 40(2): 420-425.
[7] 章彬慧, 宋春花, 牛保宁, 等. 基于LSTM-FCN的并发查询执行计划选择[J]. 计算机工程与应用, 2022, 58(2): 86-94.
ZHANG B H, SONG C H, NIU B N, et al. Selecting execution plan for concurrent queries using LSTM-FCN[J]. Computer Engineering and Applications, 2022, 58(2): 86-94.
[8] 柳浩楠, 牛保宁, 程永强. 并行查询交互度量及执行计划选择[J]. 计算机工程与应用, 2022, 58(17): 72-80.
LIU H N, NIU B N, CHENG Y Q. Measurement for parallel query interaction and execution plan selection[J]. Computer Engineering and Applications, 2022, 58(17): 72-80.
[9] DUGGAN J, CETINTEMEL U, PAPAEMMANOUIL O, et al. Performance prediction for concurrent database workloads[C]//Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data, 2011: 337-348.
[10] ZHOU X H, SUN J, Li G L, et al. Query performance prediction for concurrent queries using graph embedding[J]. Proceedings of the VLDB Endowment, 2020, 13(9): 1416-1428.
[11] 陶温霞, 牛保宁, 柳浩楠. 使用图神经网络选择并行查询的执行计划[J]. 计算机工程与应用, 2023, 59(13): 259-265.
TAO W X, NIU B N, LIU H N. Execution plan selection for parallel queries using graph neural networks[J]. Computer Engineering and Applications, 2023, 59(13): 259-265.
[12] SUN J, LI G L. An end-to-end learning-based cost estimator[J]. Proceedings of the VLDB Endowment, 2019, 13(3): 307-319.
[13] ZHU Y, LIU J, GUO M, et al. BestConfig: tapping the per- formance potential of systems via automatic configuration tuning[C]//Proceedings of the 2017 Symposium on Cloud Computing, 2017: 338-350.
[14] KUNJIR M, BABU S. Black or white? how to develop an autotuner for memory-based analytics[C]//Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, 2020: 1667-1683.
[15] KANELLIS K, DING C, KROTH B, et al. LlamaTune: sample-efficient DBMS configuration tuning[J]. Proceedings of the VLDB Endowment, 2022, 15(11): 2953-2965.
[16] WANG S, ZHONG Y, WANG C. Attention relational graph convolution networks for relation prediction in knowledge graphs[C]//Proceedings of the 2021 4th International Conference on Advanced Algorithms and Control Engineering, 2021.
[17] WANG X, BO D, SHI C, et al. A survey on heterogeneous graph embedding: methods, techniques, applications and sources[J]. IEEE Transactions on Big Data, 2022, 9(2): 415-436.
[18] DRESELER M, BOISSIER M, RABL T, et al. Quantifying TPC-H choke points and their optimizations[J]. Proceedings of the VLDB Endowment, 2020, 13(8): 1206-1220.
[19] 毕里缘, 伍赛, 陈刚, 等. 基于循环神经网络的数据库查询开销预测[J]. 软件学报, 2018, 29(3): 799-810.
BI L Y, WU S, CHEN G, et al. Database query cost prediction using recurrent neural network[J]. Journal of Software, 2018, 29(3): 799-810.
[20] DAI G Q, WANG X Z, ZOU X Y, et al. MRGAT: multi-relational graph attention network for knowledge graph completion[J]. Neural Networks, 2022, 154: 234-245.
[21] ZHAO Y, ZHOU H, ZHANG A, et al. Connecting embeddings based on multiplex relational graph attention networks for knowledge graph entity typing[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 35(5): 4608-4620. |