TAO Wenxia, NIU Baoning, LIU Haonan. Execution Plan Selection for Parallel Queries Using Graph Neural Networks[J]. Computer Engineering and Applications, 2023, 59(13): 259-265.
[1] 章彬慧,宋春花,牛保宁,等.基于LSTM-FCN的并发查询执行计划选择[J].计算机工程与应用,2022,58(2):86-94.
ZHANG B H,SONG C H,NIU B N,et al.Selecting execution plan for concurrent queries using LSTM-FCN[J].Computer Engineering and Applications,2022,58(2):86-94.
[2] MARCUS R,NEGI P,MAO H Z,et al.NEO:a learned query optimizer[J].Proceedings of the VLDB Endowment,2019,12(11):1705-1718.
[3] 孙振兴,向阳,刘增宝.PostgreSQL查询优化器分析研究[J].计算机技术与发展,2011,21(8):141-144.
SUN Z X,XIANG Y,LIU Z B.Analysis and research on optimizer of PostgreSQL[J].Computer Technology and Development,2011,21(8):141-144.
[4] GHOSH A,PARIKH J,SENGAR V S,et al.Plan selection based on query clustering[C]//Proceedings of the 28th International Conference on Very Large Databases,2002:179-190.
[5] AHMAD M,ABOULNAGA A,BABU S,et al.Modeling and exploiting query interactions in database systems[C]//Proceedings of the 17th ACM Conference on Information and Knowledge Management,2008:183-192.
[6] AHMAD M.Query interactions in database systems[D].Waterloo:University of Waterloo,2013.
[7] 柳浩楠,牛保宁,程永强.并行查询交互度量及执行计划选择[J].计算机工程与应用,2022,58(17):72-80.
LIU H N,NIU B N,CHENG Y Q.Measurement for parallel query interaction and execution plan selection[J].Computer Engineering and Applications,2022,58(17):72-80.
[8] 张青峰,许静,李珊珊.一种交互感知的并行查询调度策略[J].吉林大学学报,2015,45(1):252-260.
ZHANG Q F,XU J,LI S S.Interaction-aware parallel query scheduling strategy[J].Journal of Jilin University,2015,45(1):252-260.
[9] 裴泽锋,牛保宁,张锦文,等.并行查询下查询执行计划的选择[J].计算机应用,2020,40(2):420-425.
PEI Z F,NIU B N,ZHANG J W,et al.Query execution plan selection under concurrent query[J].Journal of Computer Applications,2020,40(2):420-425.
[10] 张锦文,牛保宁,李爱萍.查询交互响应时间预测模型的采样优化[J].小型微型计算机系统,2015,36(10):2240-2244.
ZHANG J W,NIU B N,Li A P.An optimized sampling method for query interaction aware respond time modeling[J].Journal of Chinese Computer Systems,2015,36(10):2240-2244.
[11] 刘云生,迟岩.基于遗传算法的实时内存数据库查询优化[J].小型微型计算机系统,2005(3):466-469.
LIU Y S,CHI Y.Query optimization based on GA in a RTMMDB[J].Journal of Chinese Computer Systems,2005(3):466-469.
[12] LAN H,BAO Z F,PENG Y W.A survey on advancing the DBMS query optimizer:cardinality estimation,cost model,and plan enumeration[J].Data Science and Engineering,2021,6(1):86-101.
[13] WANG W,ZHANG M,CHEN G,et al.Database meets deep learning:challenges and opportunities[J].ACM SIGMOD Record,2016,45(2):17-22.
[14] JI S,LI G L.An end-to-end learning-based cost estimator[J].Proceedings of the VLDB Endowment,2019,13(3):307-319.
[15] YANG Z H,LIANG E,KAMSETTY A,et al.Deep unsupervised cardinality estimation[J].Proceedings of the VLDB Endowment,2019,13(3):279-292.
[16] LI G L,ZHOU X H,LI S F,et al.QTune:a query-aware database tuning system with deep reinforcement learning[J].Proceedings of the VLDB Endowment,2019,12(12):2118-2130.
[17] DUGGAN J,CETINTEMEL U,PAPAEMMANOUIL O,et al.Performance prediction for concurrent database workloads[C]//Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data,2011:337-348.
[18] 毕里缘,伍赛,陈刚.基于循环神经网络的数据库查询开销预测[J].软件学报,2018,29(3):799-810.
BI L Y,WU S,CHEN G.Database query cost prediction using recurrent neural network[J].Journal of Software,2018,29(3):799-820.
[19] ZHOU X H,JI S,LI G L,et al.Query performance prediction for concurrent queries using graph embedding[J].Proceedings of the VLDB Endowment,2020,13(9):1416-1428.
[20] WANG S,ZHONG Y,WANG C P.Attention relational graph convolution networks for relation prediction in knowledge graphs[J].Journal of Physics:Conference Series,2021,1848:012073.
[21] KIPF T N,WELLING M.Semi-supervised classification with graph convolutional networks[J].arXiv:1609.02907,2016.
[22] DRESELER M,BOISSIER M,RABL T,et al.Quantifying TPC-H choke points and their optimizations[J].Proceedings of the VLDB Endowment,2020,13(10):1206-1220.