[1] SATYANARAYANAN M. The emergence of edge computing[J]. Computer, 2017, 50(1): 30-39.
[2] LUO Q, HU S, LI C, et al. Resource scheduling in edge computing: a survey[J]. IEEE Communications Surveys & Tutorials, 2021, 23(4): 2131-2165.
[3] KAUR N, KUMAR A, KUMAR R. A novel task scheduling model for fog computing[C]//Proceedings of the 2020 International Conference on Inventive Communication and Computational Technologies. Cham: Springer, 2021: 845-857.
[4] ZHANG C, TAN H, HUANG H, et al. Online approximation scheme for scheduling heterogeneous utility jobs in edge computing[J]. IEEE/ACM Transactions on Networking, 2022, 31(1): 352-365.
[5] KAUR N, KUMAR A, KUMAR R. A systematic review on task scheduling in fog computing: taxonomy, tools, challenges, and future directions[J]. Concurrency and Computation: Practice and Experience, 2021, 33(21): e6432.
[6] PAN S, CHEN Y. Energy-optimal scheduling of mobile cloud computing based on a modified Lyapunov optimization method[J]. IEEE Transactions on Green Communications and Networking, 2018, 3(1): 227-235.
[7] 周悦芝, 张迪. 近端云计算: 后云计算时代的机遇与挑战[J]. 计算机学报, 2019, 42(4): 677-700.
ZHOU Y Z, ZHANG D. Near-end cloud computing: opportunities and challenges in the post-cloud computing era[J]. Chinese Journal of Computers, 2019, 42(4): 677-700.
[8] NISAN N, ROUGHGARDEN T, TARDOS E, et al. Algorithmic game theory[M]. Cambridge: Cambridge University Press, 2007.
[9] LE T H T, TRAN N H, LEANH T, et al. Auction mechanism for dynamic bandwidth allocation in multi-tenant edge computing[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 15162-15176.
[10] PENG X, OTA K, DONG M. Multiattribute-based double auction toward resource allocation in vehicular fog computing[J]. IEEE Internet of Things Journal, 2020, 7(4): 3094-3103.
[11] LI S, ZHANG Y, SUN W, et al. A combinatorial auction mechanism for time-varying multidimensional resource allocation and pricing in fog computing[J]. International Journal of Applied Mathematics and Computer Science, 2023, 33(2): 327-339.
[12] LIU X, LI W, ZHANG X. Strategy-proof mechanism for provisioning and allocation virtual machines in heterogeneous clouds[J]. IEEE Transactions on Parallel and Distributed Systems, 2017, 29(7): 1650-1663.
[13] HE J, ZHANG D, ZHOU Y, et al. Data rate trading in mobile networks: a truthful online auction approach[C]//Proceedings of the 2019 IEEE International Conference on Communications, Shanghai, 2019: 1-6.
[14] PARKES D C. Online mechanisms[M]//Algorithmic game theory. Cambridge: Cambridge University Press, 2007: 411-439.
[15] BAHREINI T, BADRI H, GROSU D. An envy-free auction mechanism for resource allocation in edge computing systems[C]//Proceedings of the 2018 IEEE/ACM Symposium on Edge Computing, Seattle, 2018: 313-322.
[16] KAYAL P, LIEBEHERR J. Distributed service placement in fog computing: an iterative combinatorial auction approach[C]//Proceedings of the IEEE 39th International Conference on Distributed Computing Systems, Dallas, 2019: 2145-2156.
[17] KIANI A, ANSARI N. Toward hierarchical mobile edge computing: an auction-based profit maximization approach[J]. IEEE Internet of Things Journal, 2017, 4(6): 2082-2091.
[18] SUN Y, HE Q, QI L, et al. DPODA: differential privacy-based online double auction for pervasive edge computing resource allocation[C]//Proceedings of the 2nd ACM International Symposium on Blockchain and Secure Critical Infrastructure, 2020: 130-141.
[19] AGGARWAL A, KUMAR N, VIDYARTHI D P, et al. Fog-integrated cloud architecture enabled multi-attribute combinatorial reverse auctioning framework[J]. Simulation Modelling Practice and Theory, 2021, 109: 102307.
[20] STEIN S, OCHAL M, MOISOIU I A, et al. Strategy-proof reinforcement learning for online resource allocation[C]//Proceedings of the 19th International Conference on Auto-
nomous Agents and MultiAgent Systems, 2020: 1296-1304.
[21] ZHANG D, TAN L, REN J, et al. Near-optimal and truthful online auction for computation offloading in green edge-computing systems[J]. IEEE Transactions on Mobile Computing, 2019, 19(4): 880-893.
[22] 郑守建, 彭晓晖, 王一帆, 等. 一种基于综合匹配度的边缘计算系统任务调度方法[J]. 计算机学报, 2022, 45(3): 485-499.
ZHENG S J, PENG X H, WANG Y F, et al. An integrative matching degree based task scheduling[J]. Chinese Journal of Computers, 2022, 45(3): 485-499.
[23] HE J, ZHANG D, ZHOU Y, et al. A truthful online mechanism for collaborative computation offloading in mobile edge computing[J]. IEEE Transactions on Industrial Informatics, 2020, 16(7): 4832-4841.
[24] MA L, WANG X, WANG X, et al. TCDA: truthful combinatorial double auctions for mobile edge computing in industrial internet of things[J]. IEEE Transactions on Mobile Computing, 2021, 21(11): 4125-4138.
[25] HE X, SHEN Y, REN J, et al. An online auction-based incentive mechanism for soft-deadline tasks in collaborative edge computing[J]. Future Generation Computer Systems, 2022, 137: 1-13.
[26] ZHANG J, YANG X, XIE N, et al. An online auction mechanism for time-varying multidimensional resource allocation in clouds[J]. Future Generation Computer Systems, 2020, 111: 27-38.
[27] PARKES D C, SATINDER S. An MDP-based approach to online mechanism design[C]//Proceedings of the 16th International Conference on Neural Information Processing Systems, 2003: 791-798.
[28] LI G, CAI J. An online incentive mechanism for collaborative task offloading in mobile edge computing[J]. IEEE Transactions on Wireless Communications, 2019, 19(1): 624-636.
[29] Grid workloads archive[EB/OL]. (2014)[2023-11-12]. http://gwa.ewi.tudelft.nl/datasets/gwa-t-1-das2.
[30] MASHAYEKHY L, NEJAD M M, GROSU D, et al. An online mechanism for resource allocation and pricing in clouds[J]. IEEE Transactions on Computers, 2016, 65(4): 1172-1184. |