[1] GHOBAKHLOO M. Industry 4.0, digitization, and opportunities for sustainability[J]. Journal of Cleaner Production, 2020, 252: 119869.
[2] VIAL G. Understanding digital transformation: a review and a research agenda[J]. The Journal of Strategic Information Systems, 2019, 28(2): 118-144.
[3] GU I Y H, ANDERSSON H, VICEN R. Wood defect classification based on image analysis and support vector machines[J]. Wood Science and Technology, 2010, 44: 693-704.
[4] JIAN C, GAO J, AO Y. Automatic surface defect detection for mobile phone screen glass based on machine vision[J]. Applied Soft Computing, 2017, 52: 348-358.
[5] ZHANG H, GUO Z, QI Z, et al. Research of glass defects detection based on DFT and optimal threshold method[C]//2012 International Conference on Computer Science and Information Processing (CSIP), 2012: 1044-1047.
[6] HUANG H, HU C, WANG T, et al. Surface defects detection for mobilephone panel workpieces based on machine vision and machine learning[C]//2017 IEEE International Conference on Information and Automation (ICIA), 2017: 370-375.
[7] WILSON B A, LEDGER P D, LIONHEART W R B. Identification of metallic objects using spectral magnetic polarizability tensor signatures: object classification[J]. International Journal for Numerical Methods in Engineering, 2022, 123(9): 2076-2111.
[8] ZOU Z, CHEN K, SHI Z, et al. Object detection in 20 years: a survey[J]. Proceedings of the IEEE, 2023, 111(3): 257-276.
[9] JAVED S, DANELLJAN M, KHAN F S, et al. Visual object tracking with discriminative filters and siamese networks: a survey and outlook[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45(5): 6552-6574.
[10] KIRAN B R, SOBH I, TALPAERT V, et al. Deep reinforcement learning for autonomous driving: a survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23(6): 4909-4926.
[11] DING R, DAI L, LI G, et al. TDD‐Net: a tiny defect detection network for printed circuit boards[J]. CAAI Transactions on Intelligence Technology, 2019, 4(2): 110-116.
[12] CHEN J, LIU Z, WANG H, et al. Automatic defect detection of fasteners on the catenary support device using deep convolutional neural network[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 67(2): 257-269.
[13] HE Y, SONG K, MENG Q, et al. An end-to-end steel surface defect detection approach via fusing multiple hierarchical features[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 69(4): 1493-1504.
[14] BAO W, DU X, WANG N, et al. A defect detection method based on BC-YOLO for transmission line components in UAV remote sensing images[J]. Remote Sensing, 2022, 14(20): 5176.
[15] TAN M, PANG R, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10781-10790.
[16] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3-19.
[17] LI H, XIONG P, AN J, et al. Pyramid attention network for semantic segmentation[J]. arXiv:1805.10180,2018.
[18] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
[19] WANG J, XU C, YANG W, et al. A normalized Gaussian Wasserstein distance for tiny object detection[J]. arXiv:2110.13389,2021.
[20] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision, 2016: 21-37.
[21] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[22] ZHANG Z, LU X, CAO G, et al. ViT-YOLO: transformer-based YOLO for object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 2799-2808.
[23] GE Z, LIU S, WANG F, et al. YOLOX: exceeding YOLO series in 2021[J]. arXiv:2107.08430,2021.
[24] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7464-7475.
[25] LI C, LI L, JIANG H, et al. YOLOv6: a single-stage object detection framework for industrial applications[J]. arXiv:2209.02976,2022. |