Real-Time Strip Steel Defect Detection Algorithm Fused with Transformer
ZHANG Taoyuan, XIE Xinlin, XIE Gang, ZHANG Lin
1.School of Electronic Information Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
2.Shanxi Key Laboratory of Advanced Control and Equipment Intelligence, Taiyuan 030024, China
3.Research and Development Engineering Research Center for Key Technology of Flat Panel Display Intelligent Manufacturing, Taiyuan 030024, China
[1] HE Y,SONG K,MENG Q,et al.An end-to-end steel surface defect detection approach via fusing multiple hierarchical features[J].IEEE Transactions on Instrumentation and Measurement,2019,69(4):1493-1504.
[2] 罗东亮,蔡雨萱,杨子豪,等.工业缺陷检测深度学习方法综述[J].中国科学:信息科学,2022,52(6):1002-1039.
LUO D L,CAI Y X,YANG Z H,et al.Survey on industrial defect detection with deep learning[J].Science in China:Information Sciences,2022,52:1002-1039.
[3] 郭萌,胡辽林,赵江涛.基于Kirsch和Canny算子的陶瓷碗表面缺陷检测方法[J].光学学报,2016,36(9):27-33.
GUO M,HU L L,ZHAO J T.Surface defect detection method of ceramic bowl based on Kirsch and Canny operator[J].Acta Optica Sinica,2016,36(9):27-33.
[4] LIU K,LI A,WEN X,et al.Steel surface defect detection using GAN and one-class classifier[C]//2019 25th International Conference on Automation and Computing,2019:1-6.
[5] REN S,HE K,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems 28:Annual Conference on Neural Information Processing Systems,2015:91-99.
[6] 向宽,李松松,栾明慧,等.基于改进Faster RCNN的铝材表面缺陷检测方法[J].仪器仪表学报,2021,42(1):191-198.
XIANG K,LI S S,LUAN M H,et al.Aluminum product surface defect detection method based on improved Faster RCNN[J].Chinese Journal of Scientific Instrument,2021,42(1):191-198.
[7] LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision.Cham:Springer,2016:21-37.
[8] CHOI J,CHUN D,KIM H,et al.Gaussian YOLOv3:an accurate and fast object detector using localization uncertainty for autonomous driving[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision,2019:502-511.
[9] WANG C Y,BOCHKOVSKIY A,LIAO H Y M.Scaled-YOLOv4:scaling cross stage partial network[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:13029-13038.
[10] LIN T Y,GOYAL P,GIRSHICK R,et al.Focal loss for dense object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision,2017:2980-2988.
[11] 李维刚,叶欣,赵云涛,等.基于改进YOLOv3算法的带钢表面缺陷检测[J].电子学报,2020,48(7):1284-1292.
LI W G,YE X,ZHAO Y T,et al.Strip steel surface defect detection based on improved YOLOv3 algorithm[J].Acta Electronica Sinica,2020,48(7):1284-1292.
[12] KOU X,LIU S,CHENG K,et al.Development of a YOLO-V3-based model for detecting defects on steel strip surface[J].Measurement,2021,182:109454.
[13] VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[C]//Advances in Neural Information Processing Systems 30:Annual Conference on Neural Information Processing Systems,2017:5998-6008.
[14] DOSOVITSKIY A,BEYER L,KOLESNIKOV A,et al.An image is worth 16x16 words:transformers for image recognition at scale[C]//Proceedings of the 9th International Conference on Learning Representations,2021.
[15] CARION N,MASSA F,SYNNAEVE G,et al.End-to-end object detection with transformers[C]//Proceedings of the 16th European Conference on Computer Vision.Cham:Springer,2020:213-229.
[16] MA N,ZHANG X,LIU M,et al.Activate or not:learning customized activation[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:8032-8042.
[17] TAN M,PANG R,LE Q V.EfficientDet:scalable and efficient object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:10781-10790.
[18] BAO Y Q,SONG K C,LIU J,et al.Triplet-graph reasoning network for few-shot metal generic surface defect segmentation[J].IEEE Transactions on Instrumentation and Measurement,2021,70:1-11.
[19] SELVARAJU R R,COGSWELL M,DAS A,et al.Grad-CAM:visual explanations from deep networks via gradient-based localization[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision,2017:618-626.