Lightweight Intra-School Pedestrian Detection Algorithm Based on Improved YOLOv4-Tiny
SUN Hao, DONG Xingfa, WANG Jun, CHEN Zhiyuan
1.School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
2.Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
3.Center of Arms Experiment of Baicheng, Baicheng, Jilin 137001, China
SUN Hao, DONG Xingfa, WANG Jun, CHEN Zhiyuan. Lightweight Intra-School Pedestrian Detection Algorithm Based on Improved YOLOv4-Tiny[J]. Computer Engineering and Applications, 2023, 59(15): 97-106.
[1] GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition,Columbus,USA,2014:580-587.
[2] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real-time object detection[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas,USA,2016:779-788.
[3] LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision,Amsterdam,The Netherlands,2016:21-37.
[4] TAN M X,PANG R M,LE Q V.Efficientdet:scalable and efficient object detection[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition,Seattle,USA,2020:10778-10787.
[5] LIU W,LIAO S C,HU W D,et al.Learning efficient single-stage pedestrian detectors by asymptotic localization fitting[C]//Proceedings of the 15th European Conference on Computer Vision,Munich,Germany,2018:643-659.
[6] 张明伟,蔡坚勇,李科,等.基于DE-YOLO的室内人员检测方法[J].计算机系统应用,2020,29(1):203-208.
ZHANG M W,CAI J Y,LI K,et al.Indoor personnels detection method based on DE-YOLO[J].Computer Systems & Applications,2020,29(1):203-208.
[7] 董小伟,韩悦,张正,等.基于多尺度加权特征融合网络的地铁行人目标检测算法[J].电子与信息学报,2021,43(7):2113-2120.
DONG X W,HAN Y,ZHANG Z,et al.Metro pedestrian detection algorithm based on multi-scale weighted feature fusion network[J].Journal of Electronics & Information Technology,2021,43(7):2113-2120.
[8] 苏杨,卢翔,李琨,等.基于轻量深度学习网络的机房人物检测研究[J].工业仪表与自动化装置,2021(1):100-103.
SU Y,LU X,LI K,et al.Research on computer room human detection based on lightweight deep learning network[J].Industrial Instrumentation & Automation,2021(1):100-103.
[9] WANG C Y,BOCHKOVSKIY A,LIAO H Y M.Scaled-YOLOv4:scaling cross stage partial network[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition,Nashville,USA,2021:13024-13033.
[10] BOCHKOVSKIY A,WANG C Y,LIAO H Y M.YOLOv4:optimal speed and accuracy of object detection[J].arXiv:2004.10934v1,2020.
[11] 方梦瑞,吕军,阮建云,等.基于改进YOLOv4-tiny的茶叶嫩芽检测模型[J].茶叶科学,2022,42(4):549-560.
FANG M R,LU J,RUAN J Y,et al.Tea buds detection model using improved YOLOv4-tiny[J].Journal of Tea Science,2022,42(4):549-560.
[12] 郭奕裕,周箩鱼.安全帽佩戴检测网络模型的轻量化设计[J].计算机工程,2023,49(4):312-320.
GUO Y Y,ZHOU L Y.Lightweight design of safety helmet wearing detection network model[J].Computer Engineering,2023,49(4):312-320.
[13] 王斌,李靖,赵康,等.面向火焰快速检测的轻量化深度网络研究[J].计算机工程与应用,2022,58(17):256-262.
WANG B,LI J,ZHAO K,et al.Research on lightweight depth network for rapid flame detection[J].Computer Engineering and Applications,2022,58(17):256-262.
[14] 郭克友,李雪,杨民.基于轻量化YOLOv4的交通信息实时检测方法[J].计算机应用,2023,43(1):74-80.
GUO K Y,LI X,YANG M.Real-time detection method of traffic information based on lightweight YOLOv4[J].Journal of Computer Applications,2023,43(1):74-80.
[15] 张明路,郭策,吕晓玲,等.改进的轻量化YOLOv4用于电子元器件检测[J].电子测量与仪器学报,2021,35(10):17-23.
ZHANG M L,GUO C,LV X L,et al.Improved lightweight YOLOv4 for electronic components detection[J].Journal of Electronic Measurement and Instrumentation,2021,35(10):17-23.
[16] 程浩然,王薪陶,李俊燃,等.改进YOLOv4-tiny的疫情协同口罩佩戴检测方法[J].计算机工程与应用:1-16[2022-09-24].http://kns.cnki.net/kcms/detail/11.2127.TP.20220812.
1448.010.html.
CHENG H R,WANG X T,LI J R,et al.Improvd YOLOv4-tiny epidemic collaborative mask wearing detection method[J/OL].Computer Engineering and Applications:1-16[2022-09-24].http://kns.cnki.net/kcms/detail/11.2127.TP.20220812.1448.010.html.
[17] 万伟彤,李长峰,朱华波,等.轻量化CenterNet网络的二维条码定位算法[J].电子测量与仪器学报,2022,36(5):128-135.
WAN W T,LI C F,ZHU H B,et al.Two-dimensional barcode positioning algorithm of lightweight CenterNet network[J].Journal of Electronic Measurement and Instrumentation,2022,36(5):128-135.
[18] HAN K,WANG Y H,TIAN Q,et al.GhostNet:more features from cheap operations[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition,Seattle,USA,2020:1577-1586.
[19] CHEN L C,PAPANDREOU G,KOKKINOS I,et al.DeepLab:semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected CRFs[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,40(4):834-848.
[20] YU F,KOLTUN V,FUNKHOUSER T.Dilated residual networks[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition,Honolulu,USA,2017:636-644.
[21] SZEGEDY C,LIU W,JIA Y,et al.Going deeper with convolutions[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2014.
[22] SANDLER M,HOWARD A,ZHU M L,et al.MobileNetV2:inverted residuals and linear bottlenecks[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,Salt Lake City,USA,2018:4510-4520.
[23] HE K M,ZHANG X Y,REN S Q,et al.Spatial pyramid pooling in deep convolutional networks for visual recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9):1904-1916.
[24] EVERINGHAM M,VAN GOOL L,WILLIAMS C K I,et al.The PASCAL visual object classes(VOC) challenge[J].International Journal of Computer Vision,2010,88(2):303-338.
[25] DALAL N,TRIGGS B.Histograms of oriented gradients for human detection[C]//Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,San Diego,USA,2005:886-893.
[26] OUYANG W L,WANG X G.A discriminative deep model for pedestrian detection with occlusion handling[C]//Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition,Providence,USA,2012:3258-3265.
[27] CHIU Y C,TSAI C Y,RUAN M D,et al.MobilenetSSDv2:an improved object detection model for embedded systems[C]//Proceedings of 2020 International Conference on System Science and Engineering,Kagawa,Japan,2020:1-5.
[28] LIU J,LIU L Z.Helmet wearing detection based on YOLOv4-MT[C]//Proceedings of the 2021 4th International Conference on Robotics,Control and Automation Engineering,Wuhan,China,2021:1-5.
[29] FANG L F,WU Y Q,LI Y H,et al.Ginger seeding detection and shoot orientation discrimination using an improved YOLOv4-LITE network[J].Agronomy,2021,11(11):2328.
[30] WANG S Y,CHEN T,LV X Y,et al.Forest fire detection based on lightweight Yolo[C]//Proceedings of the 2021 33rd Chinese Control and Decision Conference,Kunming,China,2021:1560-1565.
[31] WANG H X,GE H Y,LI M X.PFGYOLO:a safety helmet detection based on YOLOv4[C]//Proceedings of the 2021 IEEE 5th Information Technology,Networking,Electronic and Automation Control Conference,Xi’an,China,2021:1242-1246.
[32] REN S,HE K,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2017,39(6):1137-1149.
[33] CAI Z,VASCONCELOS N.Cascade R-CNN:delving into high quality object detection[J].Computer Vision and Pattern Recoginition,2017(6):798-802.
[34] LIN T Y,GOYAL P,GIRSHICK R,et al.Focal loss for dense object detection[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2017(99):2999-3007.