[1] 王娜,施建淮.我国金融稳定指数的构建:基于主成分分析法[J].南方金融,2017(6):46-55.
WANG N,SHI J H.Construction of China’s financial stability index:based on principal component analysis[J].South China Finance,2017(6):46-55.
[2] 万校基,李海林.基于特征表示的金融多元时间序列数据分析[J].统计与决策,2015(23):151-155.
WAN X J,LI H L.Analysis of financial multivariate time series data based on feature representation[J].Statistics & Decision,2015(23):151-155.
[3] RASEKHSCHAFFE K C,ROBERT C J.Machine learning for stock selection[J].Financial Analysts Journal,2019,75(3):70-88.
[4] 张倩玉,严冬梅,韩佳彤.结合深度学习和分解算法的股票价格预测研究[J].计算机工程与应用,2021,57(5):56-64.
ZHANG Q Y,YAN D M,HAN J T.Research on stock price prediction based on deep learning and decomposition algorithm[J].Computer Engineering and Applications,2021,57(5):56-64.
[5] 邓佳丽,赵凤群,王小侠.MTICA-AEO-SVR股票价格预测模型[J].计算机工程与应用,2022,58(8):257-263.
DENG J L,ZHAO F Q,WANG X X.MTICA-AEO-SVR stock price forecasting model[J].Computer Engineering and Applications,2022,58(8):257-263.
[6] MOGHADDAM A H,MOGHADDAM M H,ESFANDYARI M.Stock market index prediction using artificial neural network[J].Journal of Economics,Finance and Administrative Science,2016,21(41):89-93.
[7] 刘玉玲,赵国龙,邹自然,等.基于情感分析和GAN的股票价格预测方法[J].湖南大学学报(自然科学版),2022,49(10):111-118.
LIU Y L,ZHAO G L,ZOU Z R,et al.Stock price forecasting method based on sentiment analysis and GAN[J].Journal of Hunan University(Natural Sciences),2022,49(10):111-118.
[8] HOSEINZADE E,HARATIZADEH S.CNNpred:CNN-based stock market prediction using a diverse set of variables[J].Expert Systems with Applications,2019,129:273-285.
[9] QIU Y,YANG H Y,LU S,et al.A novel hybrid model based on recurrent neural networks for stock market timing[J].Soft Computing,2020,24(20):15273-15290.
[10] 耿晶晶,刘玉敏,李洋,等.基于CNN-LSTM的股票指数预测模型[J].统计与决策,2021,37(5):134-138.
GENG J J,LIU Y M,LI Y,et al.Prediction model of stock index based on CNN-LSTM[J].Statistics & Decision,2021,37(5):134-138.
[11] 宋刚,张云峰,包芳勋,等.基于粒子群优化LSTM的股票预测模型[J].北京航空航天大学学报,2019,45(12):2533-2542.
SONG G,ZHANG Y F,BAO F X,et al.Stock forecasting model based on particle swarm optimization LSTM[J].Journal of Beijing University of Aeronautics and Astronautics,2019,45(12):2533-2542.
[12] 林昱,常晋源,黄雁勇.融合经验模态分解与深度时序模型的股价预测[J].系统工程理论与实践,2022,42(6):1663-1677.
LIN Y,CHANG J Y,HUANG Y Y.Stock price forecasting based on empirical mode decomposition and deep time series model[J].Systems Engineering-Theory & Practice,2022,42(6):1663-1677.
[13] ZHANG Q Y,QIN C,ZHANG F Y,et al.Transformer-based attention network for stock movement prediction[J].Expert Systems with Application,2022,202:117239.
[14] WANG C J,CHEN Y Y,ZHANG S Q,et al.Stock market index prediction using deep Transformer model[J].Expert Systems with Application,2022,208:118128.
[15] DING Q G,WU S F,SUN H,et al.Hierarchical multi-scale gaussian transformer for stock movement prediction[C]//Proceedings of International Joint Conference on Artificial Intelligence,2022:4640-4646.
[16] 谷丽琼,吴运杰,逄金辉.基于Attention机制的GRU股票预测模型[J].系统工程,2020,38(5):134-140.
GU L Q,WU Y J,PANG J H.GRU based on attention mechanism stock forecast model[J].Systems Engineering,2020,38(5):134-140.
[17] 杨磊,姚汝婧.基于Transformer的信用卡违约预测模型研究[J].计算机仿真,2021,38(8):440-444.
YANG L,YAO R J.Research on credit card default prediction model based on transformer[J].Computer Simulation,2021,38(8):440-444.
[18] ZHOU H Y,ZHANG S H,PENG J Q,et al.Informer:beyond efficient transformer for long sequence time-series forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2021:11106-11115.
[19] VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[C]//Advances in Neural Information Processing Systems,2017:5998-6008.
[20] 徐浩然,许波,徐可文.机器学习在股票预测中的应用综述[J].计算机工程与应用,2020,56(12):19-24.
XU H R,XU B,XU K W.Application of machine learning in stock prediction[J].Computer Engineering and Applications,2020,56(12):19-24.
[21] KINGMA D P,BA J.Adam:a method for stochastic optimization[C]//Proceedings of the 3rd International Conference for Learning Representations(ICLR),2015:1-15.
[22] JIN Z,GUO K,SUN Y,et al.The industrial asymmetry of the stock price prediction with investor sentiment:based on the comparison of predictive effects with SVR[J].Journal of Forecasting,2020,39(7):1166-1178.
[23] NELSON D M Q,PEREIRA A C M,OLIVEIRA R A D.Stock market’s price movement prediction with LSTM neural networks[C]//Proceedings of 2017 International Joint Conference on Neural Networks(IJCNN),2017:1419-1426.
[24] LI S Y,JIN X Y,XUAN Y,et al.Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting[C]//Advances in Neural Information Processing Systems,2019:5243-5253.
[25] PREETI R B,SINGH R P.A dual-stage advanced deep learning algorithm for long-term and long-sequence prediction for multivariate financial time series[J].Applied Soft Computing,2022,126:109317.
[26] KITAEV N,KAISER ?,LEVSKAYA A.Reformer:the efficient transformer[J].arXiv:2001.04451,2020.