Cross-Domain Adaptive Object Detection Based on CNN Image Enhancement in Foggy Conditions
GUO Ying, LIANG Ruilin, WANG Runmin
The Joint Laboratory for Internet of Vehicles of Ministry of Education-China Mobile Communications Corporation, Chang’an University, Xi’an 710018, China
GUO Ying, LIANG Ruilin, WANG Runmin. Cross-Domain Adaptive Object Detection Based on CNN Image Enhancement in Foggy Conditions[J]. Computer Engineering and Applications, 2023, 59(16): 187-195.
[1] 朱向雷,王海弛,尤翰墨,等.自动驾驶智能系统测试研究综述[J].软件学报,2021,32(7):2056-2077.
ZHU X L,WANG H C,YOU H M,et al.Survey on testing of intelligent systems in autonomous vehicles[J].Journal of Software,2021,32(7):2056-2077.
[2] ZHOU J,GAO D,ZHANG D.Moving vehicle detection for automatic traffic monitoring[J].IEEE Transportation Vehicle Technology,2007,56(1):51-59.
[3] MANDELOS N A,KERAMITSOGLOU I,KIRANOUDIS C T.A background subtraction algorithm for detecting and tracking vehicles[J].Expert System Apply,2011,38(3):1619-1631.
[4] 茅智慧,朱佳利,吴鑫,等.基于YOLO的自动驾驶目标检测研究综述[J].计算机工程与应用,2022,58(15):68-77.
MAO Z H,ZHU J L,WU X,et al.Review of YOLO based target detection for autonomous driving[J].Computer Engineering and Applications,2022,58(15):68-77.
[5] 徐谦,李颖,王刚.基于深度学习的行人和车辆检测[J].吉林大学学报(工学版),2019,49(5):1661-1667.
XU Q,LI Y,WANG G.Pedestrian-vehicle detection based on deep learning[J].Journal of Jilin University(Engineering Edition),2019,49(5):1661-1667.
[6] 汪昱东,郭继昌,王天保.一种改进的雾天图像行人和车辆检测算法[J].西安电子科技大学学报,2020,47(4):70-77.
WANG Y D,GUO J C,WANG T B.Algorithm for foggy-image pedestrian and vehicle detection[J].Journal of Xi’an University of Electronic Science and Technology,2020,47(4):70-77.
[7] ZHU Q,MAI J,SHAO L.A fast single image haze removal algorithm using color attenuation prior[J].IEEE Transactions on Image Processing,2015,24(11):3522-3533.
[8] LI B Y,PENG X L,WANG Z Y,et al.AOD-Net:all-in-one dehazing network[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision,Venice,2017:4780-4788.
[9] CAI B,XU X,JIA K,et al.DehazeNet:an end-to-end system for single image haze removal[J].IEEE Transactions on Image Processing,2016,25(11):5187-5198.
[10] ENGIN D,GEN A,EKENEL H K.Cycle-Dehaze:enhanced cycleGAN for single image dehazing[C]//Proceedings of the 2018 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops,Salt Lake City,2018:938-946.
[11] BINKOWSKI M,SUTHERLAND D J,ARBEL M,et al.Demystifying MMD GANs[C]//Proceedings of the 6th International Conference on Learning Representations,Vancouver,2018:149806.
[12] HEUSEL M,RAMSAUER H,UNTERTHINER T,et al.GANs trained by a two time-scale update rule converge to a local Nash equilibrium[C]//Advances in Neural Information Processing Systems,2017:6626-6637.
[13] PAN S J,YANG Q J,ENGINEERING D.A survey on transfer learning[J].IEEE Transactions on Knowledge and Data Engineering,2009,22(10):1345-1359.
[14] WEISS K,KHOSHGOFTAAR T M,WANG D J.A survey of transfer learning[J].Journal of Big Data,2016,3(1):1-40.
[15] CHEN Y H,LI W,SAKARIDIS C,et al.Domain adaptive Faster R-CNN for object detection in the wild[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition,Salt Lake City,2018:3339-3348.
[16] GIRSHICK R.Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision,Santiago,2015:1440-1448.
[17] HE Z W,ZHANG L.Multi-adversarial Faster-RCNN for unrestricted object detection[C]//Proceedings of the 2019 IEEE International Conference on Computer Vision,Seoul,2019:6667-6676.
[18] SAITO K,USHIKU Y,HARADA T,et al.Strong-weak distribution alignment for adaptive object detection[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition,Long Beach,2019:6956-6965.
[19] CHEN Y,WANG H,LI W,et al.Scale-aware domain adaptive Faster R-CNN[J].International Journal of Computer Vision,2021,129(7):2223-2243.
[20] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition,2016:779-788.
[21] ZHANG S Z,TUO H Y,H J,et al.Domain adaptive YOLO for one-stage cross-domain detection[J].arXiv:2106.13939,2021.
[22] HNEWA M,RADHA H.Multiscale domain adaptive YOLO for cross-domain object detection[C]//Proceedings of the 2021 IEEE International Conference on Image Processing,Anchorage,2021:3323-3327.
[23] KHODAMBASHI S,MOGHADDAM M.An impulse noise fading technique based on local histogram processing[C]//Proceedings of the 2009 IEEE International Symposium on Signal Processing and Information Technology,Ajman,2009:95-100.
[24] PARIHAR A S,GUPTA Y K,SINGODIA Y,et al.A comparative study of image dehazing algorithms[C]//Proceedings of the 5th International Conference on Communication and Electronics Systems,Coimbatore,2020:766-771.
[25] LIU F,CAO L,SHAO X P,et al.Polarimetric dehazing utilizing spatial frequency segregation of images[J].Applied Optics,2015,54(27):8116-8122.
[26] ZHANG W H,GAO S S,JING C,et al.Single image dehazing method under the influence of un-uniform illumination[C]//2016 IEEE 14th International Conference on Dependable,Autonomic & Secure Computing,International Conference on Pervasive Intelligence & Computing,International Conference on Big Data Intelligence & Computing & Cyber Science & Technology Congress,Auckland,2016:233-238.
[27] YU R S,LIU W Y,ZHANG Y S,et al.Deep exposure:learning to expose photos with asynchronously reinforced adversarial learning[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems,Montréal,2018:2153-2163.
[28] HU Y M,HE H,XU C X,et al.Exposure:a white-box photo post-processing framework[J].ACM Transactions on Graphics,2018,37(2):26.
[29] ZENG H,CAI J R,LI L,et al.Learning image-adaptive 3D lookup tables for high performance photo enhancement in real-time[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,44(4):2058-2073.
[30] HSU H K,YAO C H,TSAI Y H,et al.Progressive domain adaptation for object detection[C]//2020 IEEE Winter Conference on Applications of Computer Vision,Snowmass,2020:749-757.
[31] BOCHKOVSKIY A,WANG C Y,LIAO H Y M.YOLOv4:optimal speed and accuracy of object detection[J].arXiv:2004.10934,2020.
[32] SAKARIDIS C,DAI D,GOOL L V.Semantic foggy scene understanding with synthetic data[J].International Journal of Computer Vision,2018,126:973-992.
[33] HE K,SUN J,TANG X J,et al.Single image haze removal using dark channel prior[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,33(12):2341-2353.
[34] 方帅,赵育坤,李心科,等.基于光照估计的夜间图像去雾[J].电子学报,2016,44(11):7.
FANG S,ZHAO Y K,LI X K,et al.Nighttime haze removal based on illumination estimation[J].Acta Electronica Sinica,2016,44(11):7.
[35] HUANG S C,LE T H,JAW D W.DSNet:joint semantic learning for object detection in inclement weather conditions[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,2020,43(8):2623-2633.
[36] HAUTIERE N,TAREL J P,AUBER D,et al.Blind contrast enhancement assessment by gradient ratioing at visible edges[J].Image Analysis & Stereology,2008,2:87-95.
[37] ZHANG L,ZHANG L,BOVIK A C.A feature-enriched completely blind image quality evaluator[J].IEEE Transactions on Image Processing,2015,24(8):2579-2591.
[38] XIE R C,YU F,WANG J C,et al.Multi-level domain adaptive learning for cross-domain detection[C]//Proceedings of the 2019 IEEE International Conference on Computer Vision Workshops,Seoul,2019:3213-3219.
[39] ZHENG Y T,HUANG D,LIU S T,et al.Cross-domain object detection through coarse-to-fine feature adaptation[C]//Proceedings of the 2020 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,Seattle,2020:13763-13772.