[1] 张华卫, 张文飞, 蒋占军, 等. 引入上下文信息和Attention Gate的GUS-YOLO遥感目标检测算法[J]. 计算机科学与探索, 2024, 18(2): 453-464.
ZHANG H W, ZHANG W F, JIANG Z J, et al. GUS-YOLO remote sensing target detection algorithm introducing context information and attention gate[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 453-464.
[2] 王春梅, 刘欢. YOLOv8-VSC: 一种轻量级的带钢表面缺陷检测算法[J]. 计算机科学与探索, 2024, 18(1): 151-160.
WANG C M, LIU H. YOLOv8-VSC: lightweight algorithm for strip surface defect detection[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 151-160.
[3] 周颖, 颜毓泽, 陈海永, 等. 基于改进YOLOv8的光伏电池缺陷检测[J]. 激光与光电子学进展, 2024, 61(8): 235-245.
ZHOU Y, YAN Y Z, CHEN H Y, et al. Defect detection of photovoltaic cells based on improved YOLOv8[J]. Laser & Optoelectronics Progress, 2024, 61(8): 235-245.
[4] GIRSHICK R. Fast R-CNN[C]//Proceedings of the International Conference on Computer Vision, 2015: 1440-1448.
[5] REN S Q, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[6] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[7] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271.
[8] REDMON J, FARHADI A. YOLOv3: an incremental improvement[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, 2018: 1-6.
[9] BOCHKOVSKIY A, WANG C Y, LIAO H. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[10] LI C, LI L, JIANG H, et al. YOLOv6: a single stage object detection framework for industrial applications[J]. arXiv:2209.02976, 2022.
[11] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[J]. arXiv:2207.02696, 2022.
[12] LIU Z, GA G, SUN L, et al. HRDNet: high-resolution detection network for small objects[C]//Proceedings of the 2021 IEEE International Conference on Multimedia and Expo, 2021: 1-6.
[13] 徐坚, 谢正光, 李洪均. 特征平衡的无人机航拍图像目标检测算法[J]. 计算机工程与应用, 2023, 59(6): 196-203.
XU J, XIE Z G, LI H J. Feature-balanced UAV aerial image target detection algorithm[J]. Computer Engineering and Applications, 2023, 59(6): 196-203.
[14] ZHU X, LYU S, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 2778-2788.
[15] 张灵灵, 王鹏, 李晓艳, 等. 基于优化SSD的低空无人机检测方法[J]. 计算机工程与应用, 2022, 58(16): 204-212.
ZHANG L L, WANG P, LI X Y, et al. Low-altitude UAV detection method based on optimized SSD[J]. Computer Engineering and Applications, 2022, 58(16): 204-212.
[16] HUANG H, LI L, MA H. An improved cascade R-CNN-based target detection algorithm for UAV aerial images[C]//Proceedings of the 2022 7th International Conference on Image, Vision and Computing, 2022: 232-237.
[17] 白宗宝, 张俊举, 高原, 等. 基于注意力机制的航拍图像目标检测算法[J]. 激光与光电子学进展, 2023, 60(12): 312-322.
BAI Z B, ZHANG J J, GAO Y, et al. Attention mechanism-based object detection algorithm in aerial images[J]. Laser & Optoelectronics Progress, 2023, 60(12): 312-322.
[18] 王晓红, 胡豫. 复杂背景下的无人机图像小目标检测[J]. 计算机工程与应用, 2023, 59(15): 107-114.
WANG X H, HU Y. UAV image small object detection on complex background[J]. Computer Engineering and Applications, 2023, 59(15): 107-114.
[19] CHAO L, AOJUN Z, ANBANG Y. Omni-dimensional dynamic convolution[J]. arXiv:2209.07947, 2022.
[20] GAO S H, CHENG M M, ZHAO K, et al. Res2Net: a new multi-scale backbone architecture[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 43(2): 652-662.
[21] SILIANG M, YONG X. MPDIoU: a loss for efficient and accurate bounding box regression[J]. arXiv:2307.07662, 2023.
[22] DU D, ZHU P, WEN L, et al. VisDrone-DET2019: the vision meets drone object detection in image challenge results[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, 2019: 213-226.
[23] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision, 2016: 21-37. |