[1] 张金雷, 陈奕洁, Panchamy Krishnakumari, 等. 基于注意力机制的城市轨道交通网络级多步短时客流时空综合预测模型[J]. 地球信息科学学报, 2023, 25(4): 698-713.
ZHANG J L, CHEN Y J, PANCHAMY K, et al. Attention-based multi-step short-term passenger flow spatial-temporal integrated prediction model in URT systems[J]. Journal of Geo-information Science, 2023, 25(4): 698-713.
[2] ZHANG Q, LIU X X, SPURGEON S, et al. A two-layer modelling framework for predicting passenger flow on trains: a case study of London underground trains[J]. Transportation Research, Part A: Policy and Practice, 2021, 151: 119-139.
[3] 张兴锐, 刘畅, 陈哲, 等. 基于时空图卷积网络的机场地铁短时客流预测[J]. 计算机工程与应用, 2023, 59(8): 322-330.
ZHANG X R, LIU C, CHEN Z, et al. Short-term passenger flow prediction of airport subway based on spatio-temporal graph convolutional Network[J]. Computer Engineering and Applications, 2023, 59(8): 322-330.
[4] 赵阳阳, 夏亮, 江欣国. 基于经验模态分解与长短时记忆神经网络的短时地铁客流预测模型[J]. 交通运输工程学报, 2020, 20(4): 194-204.
ZHAO Y Y, XIA L, JIANG X G. Short-term metro passenger flow prediction based on EMD-LSTM[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 194-204.
[5] 蒋阳升, 俞高赏, 胡路, 等. 基于聚类站点客流公共特征的轨道交通车站精细分类[J]. 交通运输系统工程与信息, 2022, 22(4): 106-112.
JIANG Y S, YU G S, HU L, et al. Refined classification of urban rail transit stations based on clustered station's passenger traffic flow features[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(4): 106-112.
[6] 孙晓黎, 朱才华, 李美妮, 等. 时间序列聚类下的城市轨道交通客流预测研究[J]. 铁道运输与经济, 2023, 45(3):149-157.
SUN X L, ZHU C H, LI M N, et al. Research on passenger flow prediction of urban rail transit based on time sequence clustering[J]. Railway Transport and Economy, 2023, 45(3): 149-157.
[7] KURIHARA K, ISHIOKA F, KAJINISHI S. Spatial and temporal clustering based on the echelon scan technique and software analysis[J]. Japanese Journal of Statistics and Data Science, 2020, 3(1): 313-332.
[8] RUIZ L G B, PEGALAJAR M C, ARCUCCI R, et al. A time-series clustering methodology for knowledge extraction in energy consumption data[J]. Expert Systems with Applications, 2020, 160: 113731.
[9] 李海林, 张丽萍. 时间序列数据挖掘中的聚类研究综述[J]. 电子科技大学学报, 2022, 51(3): 416-424.
LI H L, ZHANG L P. Summary of clustering research in time series data mining[J]. Journal of University of Electronic Science and Technology of China, 2022, 51(3): 416-424.
[10] 李正欣, 张凤鸣, 张晓丰, 等. 多元时间序列相似性搜索研究综述[J]. 控制与决策, 2017, 32(4): 577-583.
LI Z X, ZHANG F M, ZHANG X F, et al. Survey of similarity search for multivariate time series[J]. Control and Decision, 2017, 32(4): 577-583.
[11] 乔美英, 刘宇翔, 陶慧. 一种基于信息熵和DTW的多维时间序列相似性度量算法[J]. 中山大学学报(自然科学版), 2019, 58(2): 1-8.
QIAO M Y, LIU Y X, TAO H. A similarity metric algorithm for multivariate time series based on information entropy and DTW[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2019, 58(2): 1-8.
[12] 朱才华, 孙晓黎, 李培坤, 等. 融合车站分类和数据降噪的城市轨道交通短时客流预测[J]. 铁道科学与工程学报, 2022, 19(8): 2182-2192.
ZHU C H, SUN X L, LI P K, et al. Short-term urban rail transit passenger flow prediction based on incorporating station classification and data noise reduction[J]. Journal of Railway Science and Engineering, 2022, 19(8): 2182-2192.
[13] NI M, HE Q, GAO J. Forecasting the subway passenger flow under event occurrences with social media[J].IEEE Transactions on Intelligent Transportation Systems, 2016, 18(6): 1623-1632.
[14] 申雷霄, 陆宇航, 郭建华. 卡尔曼滤波短时交通流预测普通国省道适应性研究[J]. 交通信息与安全, 2021, 39(5):117-127.
SHEN L X, LU Y H, GUO J H. Adaptability of Kalman filter for short-time traffic flow forecasting on national and provincial highways[J]. Journal of Transport Information and Safety, 2021, 39(5): 117-127.
[15] 郇宁, 谢俏, 叶红霞, 等. 基于改进KNN算法的城轨进站客流实时预测[J]. 交通运输系统工程与信息, 2018, 18(5): 121-128.
HUAN N, XIE Q, YE H X, et al. Real-time forecasting of urban rail transit ridership at the station level based on improved KNN algorithm[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(5): 121-128.
[16] 王盛, 杨信丰. 基于EEMD-GWO-LSSVM的公共交通短期客流预测[J]. 计算机工程与应用, 2019, 55(20): 216-221.
WANG S, YANG X F. Short-term passenger flow forecasting of public transport based on EEMD-GWO-LSSVM[J].Computer Engineering and Applications, 2019, 55(20): 216-221.
[17] 温惠英, 张东冉, 陆思园. GA-LSTM模型在高速公路交通流预测中的应用[J]. 哈尔滨工业大学学报, 2019, 51(9): 81-87.
WEN H Y, ZHANG D R, LU S Y. Application of GA-LSTM model in highway traffic flow prediction[J]. Journal of Harbin Institute of Technology, 2019, 51(9): 81-87.
[18] 刘晓磊, 段征宇, 余庆, 等. 基于图卷积循环神经网络的城市轨道客流预测[J]. 华南理工大学学报(自然科学版), 2022, 50(3): 21-27.
LIU X L, DUAN Z Y, YU Q, et al. Passenger flow forecast of urban rail transit based on graph convolution and recurrent neural network[J].Journal of South China University of Technology(Natural Science Edition), 2022, 50(3): 21-27.
[19] 唐继强, 杨璐琦, 杨武. 融合长短期记忆网络和图卷积网络的轨道交通短时客流起讫点预测[J]. 重庆大学学报, 2022, 45(11): 91-99.
TANG J Q, YANG L Q, YANG W. Urban rail transit short-term passenger flow origin-destination forecast based on LSTM and GCN[J]. Journal of Chongqing University, 2022, 45(11): 91-99.
[20] XU J H, LU W B, LI Y R, et al. A multi-directional recurrent graph convolutional network model for reconstructing traffic spatiotemporal diagram[J]. Transportation Letters, 2023: 1-11.
[21] 李文, 陈佳伟, 刘瑞雪, 等. 张量时间序列预测T-Transformer模型[J]. 计算机工程与应用, 2023, 59(11): 57-62.
LI W, CHEN J W, LIU R X, et al. T-Transformer model for predicting tensor time series[J]. Computer Engineering and Applications, 2023, 59(11): 57-62.
[22] 吴翊恺, 胡启洲, 吴啸宇. 车联网背景下的机动车辆轨迹预测模型[J]. 东南大学学报(自然科学版), 2022, 52(6): 1199-1208.
WU Y K, HU Q Z, WU X Y. Vehicle trajectory prediction model in the context of Internet of vehicles[J]. Journal of Southeast University(Natural Science Edition), 2022, 52(6): 1199-1208.
[23] 耿立艳, 鲁荣利, 李新杰. 基于波动聚集性的城际高铁客流量预测[J]. 铁道科学与工程学报, 2019, 16(8): 1890-1896.
GENG L Y, LU R L, LI X J. Predicting intercity high-speed railway passenger flow based on volatility clustering[J]. Journal of Railway Science and Engineering, 2019, 16(8): 1890-1896.
[24] 赵建东, 朱丹, 刘佳欣. 基于时间序列分解与门控循环单元的地铁换乘客流预测[J]. 华南理工大学学报(自然科学版), 2022, 50(5): 22-31.
ZHAO J D, ZHU D, LIU J X. Metro transfer passenger flow prediction based on STL-GRU[J]. Journal of South China University of Technology (Natural Science Edition), 2022, 50(5): 22-31.
[25] LI Y P, MA C X. Short-time bus route passenger flow prediction based on a secondary decomposition integration method[J]. Journal of Transportation Engineering, Part A: Systems, 2023, 149(2): 04022132.
[26] TANG J J, GAO F, LIU F, et al. A denoising scheme-based traffic flow prediction model: combination of ensemble empirical mode decomposition and fuzzy C-Means neural network[J]. IEEE Access, 2020, 8: 11546-11559.
[27] 田秀娟, 于德新, 邢雪, 等. 交叉口短时流量CEEMDAN-PE-OSELM预测模型[J]. 哈尔滨工业大学学报, 2018, 50(3): 83-89.
TIAN X J, YU D X, XING X, et al. Prediction model of CEEMDAN-PE-OSELM for intersections short-term traffic flow[J]. Journal of Harbin Institute of Technology, 2018, 50(3): 83-89. |