[1] PENG J, WANG Y, GUAN J, et al. An end-to-end heterogeneous graph representation learning-based framework for drug-target interaction prediction[J]. Briefings in Bioinformatics, 2021, 22(5): bbaa430.
[2] XUAN P, FAN M, CUI H, et al. GVDTI: graph convolu-tional and variational autoencoders with attribute-level at-tention for drug-protein interaction prediction[J]. Briefings in Bioinformatics, 2022, 23(1): bbab453.
[3] SHAO K, ZHANG Y, WEN Y, et al. DTI-HETA: prediction of drug-target interactions based on GCN and GAT on heterogeneous graph[J]. Briefings in Bioinformatics, 2022, 23(3): bbac109.
[4] 李卓容, 唐云祁. 基于深度学习的多模态生物特征融合模型[J]. 计算机工程与应用, 2023, 59(7): 180-189.
LI Z R, TANG Y Q. Multimodal biometric fusion model based on deep learning[J]. Computer Engineering and Ap-plications, 2023, 59(7): 180-189.
[5] ZHANG P, WEI Z, CHE C, et al. DeepMGT-DTI: transformer network incorporating multilayer graph information for drug-target interaction prediction[J]. Computers in Biology and Medicine, 2022, 142: 105214.
[6] BAI P, MILJKOVI? F, JOHN B, et al. Interpretable bilinear attention network with domain adaptation improves drug-target prediction[J]. Nature Machine Intelligence, 2023, 5(2): 126-136.
[7] WU Y, GAO M, ZENG M, et al. BridgeDPI: a novel graph neural network for predicting drug-protein interactions[J]. Bioinformatics, 2022, 38(9): 2571-2578.
[8] HUA Y, SONG X, FENG Z, et al. MFR-DTA: a multi-functional and robust model for predicting drug-target binding affinity and region[J]. Bioinformatics, 2023, 39(2): btad056.
[9] 谢良旭, 李峰, 谢建平, 等. 基于融合神经网络模型的药物分子性质预测[J]. 计算机科学, 2021, 48(9): 251-256.
XIE L X, LI F, XIE J P, et al. Predicting drug molecular properties based on ensembling neural networks models[J]. Computer Science, 2021, 48(9): 251-256.
[10] WANG H, WANG J, DONG C, et al. A novel approach for drug-target interactions prediction based on multimodal deep autoencoder[J]. Frontiers in Pharmacology, 2020, 10: 1592.
[11] LIU Z, CHEN Q, LAN W, et al. GADTI: graph autoencoder approach for DTI prediction from heterogeneous network[J]. Frontiers in Genetics, 2021, 12: 650821.
[12] SAJADI S Z, ZARE CHAHOOKI M A, GHARAGHANI S, et al. AutoDTI++: deep unsupervised learning for DTI prediction by autoencoders[J]. BMC Bioinformatics, 2021, 22(1): 1-19.
[13] 曹业伟, 刘飞. 癌症多组学数据深度自编码器整合分型方法[J]. 计算机工程与应用, 2022, 58(18): 154-161.
CAO Y W, LIU F. Multi-omics data deep autoencoder in-tegration for cancer subtyping[J]. Computer Engineering and Applications, 2022, 58(18): 154-161.
[14] CHU Y, KAUSHIK A C, WANG X, et al. DTI-CDF: a cascade deep forest model towards the prediction of drug-target interactions based on hybrid features[J]. Briefings in Bioinformatics, 2021, 22(1): 451-462.
[15] OLAYAN R S, ASHOOR H, BAJIC V B. DDR: efficient computational method to predict drug-target interactions using graph mining and machine learning approaches[J]. Bioinformatics, 2018, 34(7): 1164-1173.
[16] HUANG K, XIAO C, GLASS L M, et al. MolTrans: mo-lecular interaction transformer for drug-target interaction prediction[J]. Bioinformatics, 2021, 37(6): 830-836.
[17] KANEHISA M, FURUMICHI M, SATO Y, et al. KEGG: integrating viruses and cellular organisms[J]. Nucleic Acids Research, 2021, 49(D1): D545-D551.
[18] WANG X, CHENG Y, YANG Y, et al. Multitask joint strategies of self-supervised representation learning on biomedical networks for drug discovery[J]. Nature Machine Intelligence, 2023, 5(4): 445-456.
[19] WAN F, HONG L, XIAO A, et al. NeoDTI: neural integra-tion of neighbor information from a heterogeneous network for discovering new drug-target interactions[J]. Bio-informatics, 2019, 35(1): 104-111.
[20] WEN J, ZHANG X, RUSH E, et al. Multimodal represen-tation learning for predicting molecule-disease relations[J]. Bioinformatics, 2023, 39(2): btad085.
[21] CHATTERJEE A, WALTERS R, SHAFI Z, et al. Improving the generalizability of protein-ligand binding predictions with AI-Bind[J]. Nature Communications, 2023, 14(1): 1989.
[22] FAN X N, ZHANG S W, ZHANG S Y, et al. Prediction of lncRNA-disease associations by integrating diverse heter-ogeneous information sources with RWR algorithm and positive pointwise mutual information[J]. BMC Bioinfor-matics, 2019, 20(1): 1-12.
[23] CHANG J W, DING Y, TAHIR UL QAMAR M, et al. A deep learning model based on sparse auto-encoder for pri-oritizing cancer-related genes and drug target combinations[J]. Carcinogenesis, 2019, 40(5): 624-632.
[24] MENDEZ D, GAULTON A, BENTO A P, et al. ChEMBL: towards direct deposition of bioassay data[J]. Nucleic Acids Research, 2019, 47(D1): D930-D940.
[25] WISHART D S, FEUNANG Y D, GUO A C, et al. DrugBank 5.0: a major update to the DrugBank database for 2018[J]. Nucleic Acids Research, 2018, 46(D1): D1074-D1082.
[26] WANG Y, ZHANG S, LI F, et al. Therapeutic target database 2020: enriched resource for facilitating research and early development of targeted therapeutics[J]. Nucleic Acids Research, 2020, 48(D1): D1031-D1041.
[27] KIM S, CHEN J, CHENG T, et al. PubChem in 2021: new data content and improved web interfaces[J]. Nucleic Acids Research, 2021, 49(D1): D1388-D1395. |