[1] 邓飞, 邓力洪, 胡文艺, 等. 说话人身份识别深度网络中的聚合模型研究[J]. 计算机应用研究, 2022, 39(3): 721-725.
DENG F, DENG L H, HU W Y, et al. Research on aggregation model in speaker recognition deep network[J]. Application Research of Computers, 2022, 39(3): 721-725.
[2] QI C R, SU H, MO K C, et al. Pointnet: deep learning on point sets for 3D classification and segmentation[C]Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, Hawaii, 2017: 77-85.
[3] QI C R, YI L, SU H, et al. Pointnet++: deep hierarchical feature learning on point sets in a metric space[C]//Advances in Neural Information Processing Systems, 2017: 5099-5108.
[4] MIN Y C, ZHANG Y X, CHAI X J, et al. An efficient pointlstm for point clouds based gesture recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Gjovik, Norway, 2020: 5761-5770.
[5] FAN H, YANG Y, KANKANHALLI M. Point 4D Transformer networks for spatio-temporal modeling in point cloud videos[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021: 2575-7075.
[6] ZHANG J, FISHER R B. 3D visual passcode: speech-driven 3D facial dynamics for behaviometrics[J]. Signal Processing, 2019, 160: 164-177.
[7] BRAHME A, BHADADE U. Lip detection and lip geometric feature extraction using constrained local model for spoken language identification using visual speech recognition[J]. Indian Journal of Science and Technology, 2016, 9: 1-7.
[8] ESTELLERS V, THIRAN J P. Multi-pose lipreading and audio-visual speech recognition[J]. EURASIP Journal on Advances in Signal Processing, 2012, 2012: 1-23.
[9] ZHANG J, RICHMOND K, FISHER R B. Dual-modality talking-metrics: 3D visual-audio integrated behaviometric cues from speakers[C]//Proceedings of the 2018 24th International Conference on Pattern Recognition (ICPR), Beijing, China, 2018: 3144-3149.
[10] 刘心溥, 马燕新, 许可, 等. 嵌入Transformer结构的多尺度点云补全[J]. 中国图象图形学报, 2022, 27(2): 538-549.
LIU X F, MA Y X, XU K, et al. Multi-scale Transformer based point cloud completion network[J]. Journal of Image and Graphics, 2022, 27(2): 538-549.
[11] MIN Y C, CHAI X J, ZHAO L, et al. FlickerNet: adaptive 3D gesture recognition from sparse point clouds[C]//Proceedings of the British Machine Vision Conference (BMVC), Cardiff, United Kingdom, 2019.
[12] HUANG Z, WANG X, WEI Y, et al. CCNet: criss-cross attention for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(6): 6896-6908.
[13] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42: 2011-2023.
[14] WOO S, PARK J, LEE J, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision, Munich, Germany, 2018: 3-19.
[15] XIE S N, LIU S N, CHEN Z Y, et al. Attentional ShapeContextNet for point cloud recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 2018: 4606-4615.
[16] FENG M T, ZHANG L, LIN X F, et al. Point attention network for semantic segmentation of 3D point clouds[J]. Pattern Recognition, 2020, 107: 107446.
[17] WANG X, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 2018: 7794-7803.
[18] FAN H H, YU X, DING Y H, et al. PSTNet: point spatio-temporal convolution on point cloud sequences[C]//Proceedings of the International Conference on Learning Representations (ICLR), Austria, 2021.
[19] LI X, HUANG Q, WANG Z J, et al. SequentialPointNet: a strong parallelized point cloud sequence network for 3D action recognition[J]. arXiv:2111.08492, 2021. |