[1] 杨旭东. 智能交通:城市拥堵治理的新路径[J]. 智慧中国, 2020, 51(5): 64-66.
YANG X D. Intelligent transportation: a new path for urban congestion management[J]. Wisdom China, 2020, 51(5): 64-66.
[2] SMITH B L, DEMETSKY M J. Traffic flow forecasting: comparison of modeling approaches[J]. Journal of Transportation Engineering, 1997, 123(4): 261-266.
[3] LI L, LIN W H, LIU H. Type-2 fuzzy logic approach for short-term traffic forecasting[J]. IEE Proceedings-Intelligent Transport Systems, 2006, 153(1): 33-40.
[4] AHMED M S, COOK A R. Analysis of freeway traffic time-series data by using Box-Jenkins techniques[J]. Transportation Research Record, 1979, 772: 1-9.
[5] STATHOPOULOS A, KARLAFTIS G M. A multivariate state space approach for urban traffic flow modeling and prediction[J]. Transportation Research Part C, 2003, 11(2):121-135.
[6] YAN H, QI Y, YU D J. Short-term traffic flow prediction based on a hybrid optimization algorithm[J]. Applied Mathematical Modelling, 2022, 102: 385-404.
[7] LIN G, LIN A, GU D. Using support vector regression and K-nearest neighbors for short-term traffic flow prediction based on maximal information coefficient[J]. Information Sciences, 2022, 608: 517-531.
[8] 沈夏炯, 张俊涛, 韩道军. 基于梯度提升回归树的短时交通流预测模型[J]. 计算机科学, 2018, 45(6): 222-227.
SHEN X J, ZHANG J T, HAN D J. Short-term traffic flow prediction model based on gradient boosting regression tree[J]. Computer Science, 2018, 45(6): 222-227.
[9] KASHYAP A A, RAVIRAJ S, DEVARAKONDA A, et al. Traffic flow prediction models-a review of deep learning techniques[J]. Cogent Engineering, 2022, 9(1): 2010510.
[10] 王庆, 田可可, 朱昌锋, 等. 融合多因素的短时交通流预测研究[J]. 计算机工程与应用, 2022, 58(21): 309-316.
WANG Q, TIAN K K, ZHU C F, et al. Short term traffic flow prediction based on multi-factors[J]. Computer Engineering and Applications, 2022, 58(21): 309-316.
[11] WANG X X, XU L H, CHEN K X. Data-driven short-term forecasting for urban road network traffic based on data processing and LSTM-RNN[J]. Arabian Journal for Science and Engineering, 2019, 44: 3043-3060.
[12] MEHDI M Z, KAMMOUN H M, BENAYED N G, et al. Entropy-based traffic flow labeling for CNN-based traffic congestion prediction from meta-parameters[J]. IEEE Access, 2022, 10: 16123-16133.
[13] ISLAM Z, ABDEL-ATY M, MAHMOUD N. Using CNN-LSTM to predict signal phasing and timing aided by high-resolution detector data[J]. Transportation Research Part C: Emerging Technologies, 2022, 141: 103742.
[14] ZHANG D, KABUKA M R. Combining weather condition data to predict traffic flow: a GRU-based deep learning approach[J]. IET Intelligent Transport Systems, 2018, 12(7): 578-585.
[15] TIAN Y, ZHANG K, LI J, et al. LSTM-based traffic flow prediction with missing data[J]. Neurocomputing, 2018, 318: 297-305.
[16] 杨柳. 深度学习在交通运输中应用综述[J]. 信息技术与信息化, 2022(2): 192-195.
YANG L. A review of deep learning applications in transportation[J]. Information Technology and Informatization, 2022(2): 192-195.
[17] WU Y, TAN H. Short-term traffic flow forecasting with spatial-temporal correlation in a hybrid deep learning framework[J]. arXiv:1612.01022, 2016.
[18] MA X, DAI Z, HE Z, et al. Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction[J]. Sensors, 2017, 17(4): 818.
[19] YU B, YIN H, ZHU Z X. Spatio-temporal graph convolutional networks: a deep learning frame work for traffic forecasting[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence, Stockholm, 2018: 3634-3640.
[20] GUO S N, LIN Y F, FENG N, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2019: 922-929.
[21] FANG Z, LONG Q, SONG G, et al. Spatial-temporal graph ode networks for traffic flow forecasting[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2021: 364-373.
[22] VELICKOVIC P, CUCURULL G, CASANOVA A, et al. Graph attention networks[J]. arXiv:1710.10903, 2017.
[23] OKWONU F Z, ASAJU B L, ARUNAYE F I. Breakdown analysis of Pearson correlation coefficient and robust correlation methods[C]//IOP Conference Series: Materials Science and Engineering, 2020, 917(1): 012065. |