Computer Engineering and Applications ›› 2024, Vol. 60 ›› Issue (19): 68-79.DOI: 10.3778/j.issn.1002-8331.2405-0035
• Research Hotspots and Reviews • Previous Articles Next Articles
YANG Chengbang, WANG Anzhi, REN Chunhong, TANG Jieliang
Online:
2024-10-01
Published:
2024-09-30
杨成帮,王安志,任春洪,唐洁亮
YANG Chengbang, WANG Anzhi, REN Chunhong, TANG Jieliang. Review of Video Salient Object Detection Based on Deep Neural Networks[J]. Computer Engineering and Applications, 2024, 60(19): 68-79.
杨成帮, 王安志, 任春洪, 唐洁亮. 基于深度神经网络的视频显著目标检测综述[J]. 计算机工程与应用, 2024, 60(19): 68-79.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2405-0035
[1] 陈琴, 朱磊, 后云龙, 等. 基于深度中心邻域金字塔结构的显著目标检测[J]. 模式识别与人工智能, 2020, 33(6): 496-506. CHEN Q, ZHU L, HOU Y L, et al. Salient object detection based on deep center-surround pyramid[J]. Pattern Recognition and Artificial Intelligence, 2020, 33(6): 496-506. [2] 王正文, 宋慧慧, 樊佳庆, 等. 基于语义引导特征聚合的显著性目标检测网络[J]. 自动化学报, 2023, 49(11): 2386-2395. WANG Z W, SONG H H, FAN J Q, et al. Semantic guided feature aggregation network for salient object detection[J]. Acta Automatica Sinica, 2023, 49(11): 2386-2395. [3] 张冬明, 靳国庆, 代锋, 等. 基于深度融合的显著性目标检测算法[J]. 计算机学报, 2019, 42(9): 2076-2086. ZHANG D M, JIN G Q, DAI F, et al. Salient object detection based on deep fusion of hand-crafted features[J]. Chinese Journal of Computers, 2019, 42(9): 2076-2086. [4] 何伟, 潘晨. 注意力引导网络的显著性目标检测[J]. 中国图象图形学报, 2022, 27(4): 1176-1190. HE W, PAN C. The salient object detection based on attention-guided network[J]. Journal of Image and Graphics, 2022, 27(4): 1176-1190. [5] 陈正, 赵晓丽, 张佳颖, 等. 基于跨模态特征融合的RGB-D显著性目标检测[J]. 计算机辅助设计与图形学学报, 2021, 33(11): 1688-1697. CHEN Z, ZHAO X L, ZHANG J Y, et al. RGB-D image saliency detection based on cross-model feature fusion[J]. Journal of Computer-Aided Design & Computer Graphics, 2021, 33(11): 1688-1697. [6] 孟令兵, 袁梦雅, 时雪涵, 等. 跨模态融合和边界可变形卷积引导的RGB-D显著性目标检测[J]. 电子学报, 2023, 51(11): 3155-3166. MENG L B, YUAN M Y, SHI X H, et al. RGB-D salient object detection based on cross-modal fusion and boundary deformable convolution guidance[J]. Acta Electonica Sinica, 2023, 51(11): 3155-3166. [7] 高悦, 戴蒙, 张晴. 基于多模态特征交互的RGB-D显著性目标检测[J]. 计算机工程与应用, 2024, 60(2): 211-220. GAO Y, DAI M, ZHANG Q. RGB-D salient object detection based on multi-modal feature interaction[J]. Computer Engineering and Applications, 2024, 60(2): 211-220. [8] ZHANG D, JAVED O, SHAH M. Video object segmentation through spatially accurate and temporally dense extraction of primary object regions[C]//Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013: 628-635. [9] 范登平, 季葛鹏, 秦雪彬, 等. 认知规律启发的物体分割评价标准及损失函数[J]. 中国科学: 信息科学, 2021, 51(9): 1475-1489. FAN D P, JI G P, QIN X B, et al. Cognitive vision inspired object segmentation metric and loss function[J]. Scientia Sinica Informationis, 2021, 51(9): 1475-1489. [10] WU Y, ZHENG N N, YUAN Z J, et al. Detection of salient objects with focused attention based on spatial and temporal coherence[J]. Chinese Science Bulletin, 2011, 56: 1055-1062. [11] ZHOU Z K, PEI W J, LI X, et al. Saliency-associated object tracking[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 9866-9875. [12] ZHANG Z Y, FIDLER S, URTASUN R. Instance-level segmentation for autonomous driving with deep densely connected MRFs[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 669-677. [13] ITTI L, KOCH C, NIEBUR E. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254-1259. [14] GUO C L, MA Q, ZHANG L M. Spatio-temporal saliency detection using phase spectrum of quaternion fourier transform[C]//Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008: 1-8. [15] MAHADEVAN V, VASCONCELOS N. Spatiotemporal saliency in dynamic scenes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 32(1): 171-177. [16] FAN D P, WANG W G, CHENG M M, et al. Shifting more attention to video salient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 8554-8564. [17] CHEN C L Z, WANG G T, PENG C, et al. Exploring rich and efficient spatial temporal interactions for real-time video salient object detection[J]. IEEE Transactions on Image Processing, 2021, 30: 3995-4007. [18] CONG R M, SONG W Y, LEI J J, et al. PSNet: parallel symmetric network for video salient object detection[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2022, 7(2): 402-414. [19] 丛润民, 雷建军, 付华柱, 等. 视频显著性检测研究进展[J]. 软件学报, 2018, 29(8): 2527-2544. CONG R M, LEI J J, FU H Z, et al. Research progress of video saliency detection[J]. Journal of Software, 2018, 29(8): 2527-2544. [20] WANG Q, ZHANG L, LI Y, et al. Overview of deep-learning based methods for salient object detection in videos[J]. Pattern Recognition, 2020, 104: 107340. [21] 胡晓辉, 关山. 视频序列中运动目标检测算法[J]. 计算机工程与应用, 2011, 47(16): 166-168. HU X H, GUAN S. Detection algorithm of moving target in video sequences[J]. Computer Engineering and Applications, 2011, 47(16): 166-168. [22] 徐晶, 刘鹏, 刘家锋, 等. 一种受雨滴影响的运动目标检测方法[J]. 计算机研究与发展, 2009, 46(11): 1885-1892. XU J, LIU P, LIU J F, et al. A detection algorithm for rain-affected moving objects[J]. Journal of Computer Research and Development, 2009, 46(11): 1885-1892. [23] 秦利斌, 刘纯平, 王朝晖, 等. 一种改进的时空线索的视频显著目标检测方法[J]. 计算机工程与应用, 2015, 51(16): 161-165. QIN L B, LIU C P, WANG Z H, et al. Approach of detecting salient objects in videos using spatiotemporal cues[J]. Computer Engineering and Applications, 2015, 51(16): 161-165. [24] CHEN C L Z, LI S, WANG Y G, et al. Video saliency detection via spatial-temporal fusion and low-rank coherency diffusion[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3156-3170. [25] 徐屹伟, 刘政怡, 赵悉超. 基于简单帧选择的显著性检测方法[J]. 计算机工程与应用, 2019, 55(20): 177-183. XU Y W, LIU Z Y, ZHAO X C. Saliency detection method based on simple frame selection[J]. Computer Engineering and Applications, 2019, 55(20): 177-183. [26] LIU Z, LI J H, YE L W, et al. Saliency detection for unconstrained videos using superpixel-level graph and spatiotemporal propagation[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 27(12): 2527-2542. [27] LIU T, SUN J, ZHENG N N, et al. Learning to detect a salient object[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 33(2): 353-367. [28] XUE Y W, GUO X J, CAO X C. Motion saliency detection using low-rank and sparse decomposition[C]//Proceedings of the 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012: 1485-1488. [29] WANG W G, SHEN J B, SHAO L. Consistent video saliency using local gradient flow optimization and global refinement[J]. IEEE Transactions on Image Processing, 2015, 24(11): 4185-4196. [30] WANG W G, SHEN J B, PORIKLI F. Saliency-aware geodesic video object segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 3395-3402. [31] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(4): 640-651. [32] NIE G Y, GUO Y N, LIU Y, et al. Real-time salient object detection based on fully convolutional networks[C]//Proceedings of the 12th Chinese Conference on Image and Graphics Technologies, Beijing, China, Jun 30-Jul 1, 2017. Singapore: Springer, 2018: 189-198. [33] WANG W G, SHEN J B, SHAO L. Video salient object detection via fully convolutional networks[J]. IEEE Transactions on Image Processing, 2017, 27(1): 38-49. [34] SUN M J, ZHOU Z Q, HU Q H, et al. SG-FCN: a motion and memory-based deep learning model for video saliency detection[J]. IEEE Transactions on Cybernetics, 2018, 49(8): 2900-2911. [35] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. [36] SHI X J, CHEN Z R, WANG H, et al. Convolutional LSTM network: a machine learning approach for precipitation nowcasting[M]. [S. l.]: MIT Press, 2015. [37] BALLAS N, YAO L, PAl C, et al. Delving deeper into convolutional networks for learning video representations[J]. arXiv:1511.06432, 2015. [38] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016. [39] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017, 30. [40] LI G B, XIE Y, WEI T H, et al. Flow guided recurrent neural encoder for video salient object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 3243-3252. [41] CAI J P, LIN S. A novel hybrid model for video salient object detection[C]//Proceedings of the 2020 International Conference on Computer Engineering and Intelligent Control (ICCEIC), 2020: 275-279. [42] BI H B, YANG L N, ZHU H H, et al. STEG-Net: spatiotemporal edge guidance network for video salient object detection[J]. IEEE Transactions on Cognitive and Developmental Systems, 2021, 14(3): 902-915. [43] SONG H M, WANG W G, ZHAO S Y, et al. Pyramid dilated deeper ConvLSTM for video salient object detection[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 715-731. [44] LIU B, MU K Z, XU M Z, et al. A novel spatiotemporal attention enhanced discriminative network for video salient object detection[J]. Applied Intelligence, 2022, 52(6): 5922-5937. [45] YAN P X, LI G B, XIE Y, et al. Semi-supervised video salient object detection using pseudo-labels[J]. arXiv:1908.04051, 2019. [46] WANG Z Y, LI J P, LI J X. Dual temporal memory network for video salient object detection[C]//Proceedings of the International Conference on Image and Graphics. Cham: Springer Nature Switzerland, 2023: 385-396. [47] FANG Y M, DING G Q, WEN W Y, et al. Salient object detection by spatiotemporal and semantic features in real-time video processing systems[J]. IEEE Transactions on Industrial Electronics, 2019, 67(11): 9893-9903. [48] CHEN T Y, XIAO J, HU X G, et al. Spatiotemporal context-aware network for video salient object detection[J]. Neural Computing and Applications, 2022, 34(19): 16861-16877. [49] FANG Y M, DING G Q, LI J, et al. Deep3Dsaliency: deep stereoscopic video saliency detection model by 3D convolutional networks[J]. IEEE Transactions on Image Processing, 2018, 28(5): 2305-2318. [50] WANG Z Y, LI J X, PAN Z F. Cross complementary fusion network for video salient object detection[J]. IEEE Access, 2020, 8: 201259-201270. [51] DOSOVITSKIY A, FISCHER P, LLG E, et al. FlowNet: learning optical flow with convolutional networks[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 2758-2766. [52] LLG E, MAYER N, SAIKIA T, et al. Flownet 2.0: evolution of optical flow estimation with deep networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2462-2470. [53] TEED Z, DENG J. RAFT: recurrent all-pairs field transforms for optical flow[C]//Proceedings of the 16th European Conference on Computer Vision, Glasgow, UK, Aug 23-28, 2020. Cham: Springer, 2020: 402-419. [54] SUN D Q, YANG X D, LIU M Y, et al. PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8934-8943. [55] LI H F, CHEN G Q, LI G B, et al. Motion guided attention for video salient object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 7274-7283. [56] JIAO Y X, WANG X, CHOU Y C, et al. Guidance and teaching network for video salient object detection[C]//Proceedings of the 2021 IEEE International Conference on Image Processing(ICIP), 2021: 2199-2203. [57] REN S C, HAN C, YANG X, et al. TENet: triple excitation network for video salient object detection[C]//Proceedings of the 16th European Conference on Computer Vision, Glasgow, UK, Aug 23-28, 2020. Cham: Springer, 2020: 212-228. [58] LIU J, WANG J X, WANG W K, et al. DS-Net: dynamic spatiotemporal network for video salient object detection[J]. Digital Signal Processing, 2022, 130: 103700. [59] CHEN P J, LAI J H, WANG G C, et al. Confidence-guided adaptive gate and dual differential enhancement for video salient object detection[C]//Proceedings of the 2021 IEEE International Conference on Multimedia and Expo (ICME), 2021: 1-6. [60] HUANG L L, YAN P X, LI G B, et al. Attention embedded spatio-temporal network for video salient object detection[J]. IEEE Access, 2019, 7: 166203-166213. [61] ZHAO W B, ZHANG J, LI L, et al. Weakly supervised video salient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 16826-16835. [62] TANG Y, LI Y M, XING G L. Video salient object detection via adaptive local-global refinement[J]. arxiv:2104.14360, 2021. [63] MIN D Y, ZHANG C, LU Y K, et al. Local-global interaction and progressive aggregation for video salient object detection[C]//Proceedings of the International Conference on Neural Information Processing. Singapore: Springer Nature Singapore, 2022: 101-113. [64] HUANG K, TIAN C W, XU Z J, et al. Motion context guided edge-preserving network for video salient object detection[J]. Expert Systems with Applications, 2023, 233: 120739. [65] HUANG K, XU Z J. Lightweight video salient object detection via channel-shuffle enhanced multi-modal fusion network[J]. Multimedia Tools and Applications, 2024, 83(1): 1025-1039. [66] GAO S Y, XING H Z, ZHANG W, et al. Weakly supervised video salient object detection via point supervision[C]//Proceedings of the 30th ACM International Conference on Multimedia, 2022: 3656-3665. [67] HUANG K, TIAN C W, SU J Y, et al. Transformer-based cross reference network for video salient object detection[J]. Pattern Recognition Letters, 2022, 160: 122-127. [68] MIN D Y, ZHANG C, LU Y K, et al. Mutual-guidance transformer-embedding network for video salient object detection[J]. IEEE Signal Processing Letters, 2022, 29: 1674-1678. [69] LIU N, NAN K P, ZHAO W B, et al. Learning complementary spatial-temporal transformer for video salient object detection[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(8): 10663-10673. [70] YANG H, MU N, GUO J, et al. Video salient object detection via self-attention-guided multilayer cross-stack fusion[J]. Multimedia Tools and Applications, 2023: 1-14. [71] OCHS P, MALIK J, BROX T. Segmentation of moving objects by long term video analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 36(6): 1187-1200. [72] PERAZZI F, PONT-TUSET J, MCWILLIAMS B, et al. A benchmark dataset and evaluation methodology for video object segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 724-732. [73] LI F X, KIM T, HUMAYUN A, et al. Video segmentation by tracking many figure-ground segments[C]//Proceedings of the IEEE International Conference on Computer Vision, 2013: 2192-2199. [74] LI J, XIA C Q, CHEN X W. A benchmark dataset and saliency-guided stacked autoencoders for video-based salient object detection[J]. IEEE Transactions on Image Processing, 2017, 27(1): 349-364. [75] KIM H, KIM Y, SIM J Y, et al. Spatiotemporal saliency detection for video sequences based on random walk with restart[J]. IEEE Transactions on Image Processing, 2015, 24(8): 2552-2564. [76] TSAI D, FLAGG M, NAKAZAWA A, et al. Motion coherent tracking using multi-label MRF optimization[J]. International Journal of Computer Vision, 2012, 100: 190-202. [77] ACHANTA R, HEMAMI S, ESTRADA F, et al. Frequency-tuned salient region detection[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009: 1597-1604. [78] FAN D P, CHENG M M, LIU Y, et al. Structure-measure: a new way to evaluate foreground maps[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 4548-4557. [79] PERAZZI F, KR?HENBüHL P, PRITCH Y, et al. Saliency filters: contrast based filtering for salient region detection[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012: 733-740. |
[1] | WANG Cailing, YAN Jingjing, ZHANG Zhidong. Review on Human Action Recognition Methods Based on Multimodal Data [J]. Computer Engineering and Applications, 2024, 60(9): 1-18. |
[2] | LIAN Lu, TIAN Qichuan, TAN Run, ZHANG Xiaohang. Research Progress of Image Style Transfer Based on Neural Network [J]. Computer Engineering and Applications, 2024, 60(9): 30-47. |
[3] | YANG Chenxi, ZHUANG Xufei, CHEN Junnan, LI Heng. Review of Research on Bus Travel Trajectory Prediction Based on Deep Learning [J]. Computer Engineering and Applications, 2024, 60(9): 65-78. |
[4] | SONG Jianping, WANG Yi, SUN Kaiwei, LIU Qilie. Short Text Classification Combined with Hyperbolic Graph Attention Networks and Labels [J]. Computer Engineering and Applications, 2024, 60(9): 188-195. |
[5] | CHE Yunlong, YUAN Liang, SUN Lihui. 3D Object Detection Based on Strong Semantic Key Point Sampling [J]. Computer Engineering and Applications, 2024, 60(9): 254-260. |
[6] | QIU Yunfei, WANG Yifan. Multi-Level 3D Point Cloud Completion with Dual-Branch Structure [J]. Computer Engineering and Applications, 2024, 60(9): 272-282. |
[7] | YE Bin, ZHU Xingshuai, YAO Kang, DING Shangshang, FU Weiwei. Binocular Depth Measurement Method for Desktop Interaction Scene [J]. Computer Engineering and Applications, 2024, 60(9): 283-291. |
[8] | ZHOU Bojun, CHEN Zhiyu. Survey of Few-Shot Image Classification Based on Deep Meta-Learning [J]. Computer Engineering and Applications, 2024, 60(8): 1-15. |
[9] | SUN Shilei, LI Ming, LIU Jing, MA Jingang, CHEN Tianzhen. Research Progress on Deep Learning in Field of Diabetic Retinopathy Classification [J]. Computer Engineering and Applications, 2024, 60(8): 16-30. |
[10] | WANG Weitai, WANG Xiaoqiang, LI Leixiao, TAO Yihao, LIN Hao. Review of Construction and Applications of Spatio-Temporal Graph Neural Network in Traffic Flow Prediction [J]. Computer Engineering and Applications, 2024, 60(8): 31-45. |
[11] | XIE Weiyu, ZHANG Qiang. Review on Detection of Drones and Birds in Photoelectric Images Based on Deep Learning Convolutional Neural Network [J]. Computer Engineering and Applications, 2024, 60(8): 46-55. |
[12] | ZHOU Dingwei, HU Jing, ZHANG Liangrui, DUAN Feiya. Collaborative Correction Technology of Label Omission in Dataset for Object Detection [J]. Computer Engineering and Applications, 2024, 60(8): 267-273. |
[13] | CHANG Xilong, LIANG Kun, LI Wentao. Review of Development of Deep Learning Optimizer [J]. Computer Engineering and Applications, 2024, 60(7): 1-12. |
[14] | ZHOU Yutong, MA Zhiqiang, XU Biqi, JIA Wenchao, LYU Kai, LIU Jia. Survey of Deep Learning-Based on Emotion Generation in Conversation [J]. Computer Engineering and Applications, 2024, 60(7): 13-25. |
[15] | JIANG Liang, ZHANG Cheng, WEI Dejian, CAO Hui, DU Yuzheng. Deep Learning in Aided Diagnosis of Osteoporosis [J]. Computer Engineering and Applications, 2024, 60(7): 26-40. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||