[1] KENNEDY J, EBERHART R. Particle swarm optimization [C]//Proceedings of the International Conference on Neural Networks, 1995: 1942-1948.
[2] YU H, FAN G H, YAO P, et al. A combined genetic scale system energy integration[J]. Computer & Chemical Engineering, 2000, 24(8): 2023-2035.
[3] HOLLAND J H. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence[M]. Cambridge: MIT Press, 1992.
[4] BERTSEKAS D P. Constrained optimization and Lagrange multiplier methods[M]. New York: Academic Press, 2014.
[5] SHI Y, EBERHART R. A modified particle swarm optimizer[C]//Proceedings of the 1998 IEEE International Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, 1998: 69-73.
[6] LIU H, ZHANG X W, TU L P. A modified particle swarm optimization using adaptive strategy[J]. Expert Systems with Applications, 2020, 152: 113353.
[7] 夏学文, 刘经南, 高柯夫, 等. 具备反向学习和局部学习能力的粒子群算法[J]. 计算机学报, 2015, 38(7): 1397-1407. XIA X W, LIU J N, GAO K F, et al. Particle swarm optimization algorithm with reverse-learning and local-learning behavior[J]. Chinese Journal of Computers, 2015, 38(7): 1397-1407.
[8] LI Y, ZHAN Z H, LIN S, et al. Competitive and cooperative particle swarm optimization with information sharing mechanism for global optimization problems[J]. Information Sciences, 2015, 293: 370-382.
[9] 王蓉芳, 焦李成, 刘芳, 等. 自适应动态控制种群规模的自然计算方法[J]. 软件学报, 2012, 23(7): 1760-1772.
WANG R F, JIAO L C, LIU F, et al. Nature computation with self-adaptive dynamic control strategy of population size[J].Journal of Software, 2012, 23(7): 1760-1772.
[10] KIM J ,?JANG H , PARK C. A step, stride and heading determination for the pedestrian navigation system[J]. Journal of Global Positioning Systems, 2004, 3(1): 273-279.
[11] JIMENEZ A R, SECO F, PRIETO C, et al.A comparison of pedestrian dead-reckoning algorithms using a low-cost MEMS IMU[C]//Proceedings of the 2009 IEEE International Symposium on Intelligent Signal Processing, 2009:37-42.
[12] GUERRERO-CASTELLANOS J F, MADRIGAL-SASTRE H, DURAND S, et al. A robust nonlinear observer for real-time attitude estimation using low-cost MEMS inertial sensors[J].Sensors, 2013, 13(11): 15138-15158.
[13] ZHU A, XU C, LI Z, et al. Hybridizing grey wolf optimization with differential evolution for global optimization and test scheduling for 3D stacked SoC[J]. Journal of Systems Engineering and Electronics, 2015, 26(2): 317-328.
[14] STORN R, PRICE K. Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341-359.
[15] 唐季, 郑帅强, 王子成, 等. 一种改进学习因子及压缩因子的粒子群算法[J]. 云南水力发电, 2022, 38(6): 77-79.
TANG J, ZHENG S Q, WANG Z C, et al. A particle swarm optimization with improved learning factor and compression factor[J]. Yunnan Water Power, 2022, 38(6): 77-79.
[16] 薛文. 一种改进惯性权重的粒子群优化算[J]. 现代信息科技, 2023, 7(20): 88-91.
XUE W. Particle swarm optimization algorithm with improved inertia weight[J]. Modern Information Technology,2023, 7(20): 88-91.
[17] 赵乃刚. 自适应二阶震荡粒子群算法[J]. 电子技术与软件工程, 2015(20): 182-183.
ZHAO N G.Adaptive second-order oscillatory particle swarm optimization algorithm[J]. Electronic Technology and Software Engineering, 2015(20): 182-183.
[18] 严俊, 张函, 尹冬晖. 基于随机权重的粒子群算法的串补配置优化[J]. 云南电力技术, 2023, 51(5): 17-20.
YAN J, ZHANG H, YIN D H. Optimization of series compensation configuration based on random weighting particle swarm optimization algorithm[J]. Yunnan Electric Power, 2023, 51(5): 17-20.
[19] 张晓莉, 王秦飞, 冀汶莉. 一种改进的自适应惯性权重的粒子群算法[J]. 微电子学与计算机, 2019, 36(3): 66-70.
ZHANG X L, WANG Q F, JI W L. An improved particle swarm optimization algorithm for adaptive inertial weights[J]. Microelectronics & Computer, 2019, 36(3): 66-70.
[20] 董林威, 高宏力, 潘江. 基于改进粒子群算法的路径规划研究与应用[J]. 机械制造与自动化, 2023, 52(6): 81-84.
DONG L W, GAO H L, PAN J. Research and application of path planning based on improved particle swarm optimization algorithm[J]. Mechanical Manufacturing and Automation, 2023, 52(6): 81-84.
[21] ABDEL-BASSET M, MOHAMED R, JAMEEL M, et al.Spider wasp optimizer: a novel meta-heuristic optimization algorithm[J]. Artificial Intelligence Review, 2023: 1-64.
[22] AZIZI M, AICKELIN U, A. KHORSHIDI H, et al. Energy valley optimizer:a novel metaheuristic algorithm for global and engineering optimization[J]. Scientific Reports, 2023, 13(1): 226.
[23] ABDEL-BASSET M, MOHAMED R, AZEEM S A A, et al. Kepler optimization algorithm: a new metaheuristic algorithm inspired by Kepler’s laws of planetary motion[J].Knowledge-Based Systems, 2023, 268: 110454.
[24] ZOLF K. Gold rush optimizer: a new population-based metaheuristic algorithm[J]. Operations Research and Decisions, 2023, 33(1): 113-150. |