[1] 胡成玉, 吴湘宁, 王永骥. 基于种群熵的多粒子群协同优化[J]. 计算机应用研究, 2008, 25(12): 3593-3595.
HU C Y, WU X N, WANG Y J. Co-evolutionary particle swarm optimization based on population entropy[J]. Computer Application Research, 2008, 25 (12): 3593-3595.
[2] CHENG R, JIN Y. A competitive swarm optimizer for large scale optimization[J]. IEEE Transactions on Cybernetics, 2014, 45(2): 191-204.
[3] 王彬, 王丹妮, 江巧永, 等. 基于多目标的竞争粒子群优化算法的研究[J]. 西安理工大学学报, 2022, 38(1): 75-82.
WANG B, WANG D N, JIANG Q Y, et al. Research on competitive particle swarm optimization algorithm based on multi-objective[J]. Journal of Xi’an University of Technology, 2022, 38(1): 75-82.
[4] 张豪, 王贤琳. 自适应惯性权重优化的粒子群算法[J]. 智能计算机与应用, 2023, 13(9): 5-8.
ZHANG H, WANG X L. Adaptive inertia weight particle swarm optimization algorithm[J]. Intelligent Computer and Applications, 2023, 13 (9): 5-8.
[5] 段晓东, 高红霞, 刘向东. 一种基于种群熵的自适应粒子群算法[J]. 计算机工程, 2007, 33(18): 222-223.
DUAN X D, GAO H X, LIU X D. Adaptive particle swarm optimization algorithm based on population entropy[J]. Computer Engineering, 2007, 33(18): 222-223.
[6] SHI Y H, EBERHART R C. Empirical study of particle swarm optimization[C]//Proceedings of the IEEE Congress on Evolutionary Computation, 1999: 1945-1950.
[7] 陈亮, 汤显峰. 改进正余弦算法优化特征选择及数据分类[J]. 计算机应用, 2022, 42(6): 1852-1861.
CHEN L, TANG X F. Improved sine cosine algorithm for optimizing feature selection and data classification[J]. Computer Applications, 2022, 42(6): 1852-1861.
[8] 刘景森, 马义想, 李煜. 改进鲸鱼算法求解工程设计优化问题[J]. 计算机集成制造系统, 2021, 27(7): 1884-1897.
LIU J S, MA Y X, LI Y. Improved whale algorithm for solving engineering design optimization problems[J]. Computer Integrated Manufacturing Systems, 2021, 27(7): 1884-1897.
[9] 陈雷, 尹钧圣. 高斯差分变异和对数惯性权重优化的鲸群算法[J]. 计算机工程与应用, 2021, 57(2): 77-90.
CHEN L, YIN J S. Whale swarm optimization algorithm based on Gaussian difference mutation and logarithmic inertia weight[J]. Computer Engineering and Applications, 2021, 57 (2): 77-90.
[10] 白钰, 彭珍瑞. 基于自适应惯性权重的樽海鞘群算法[J]. 控制与决策, 2022, 37(1): 237-246.
BAI Y, PENG Z R. Salp swarm algorithm based on adaptive inertia weight[J]. Control and Decision Making, 2022, 37(1): 237-246.
[11] SHANNON C E. Prediction and entropy of printed English[J]. The Bell System Technical Journal, 1951, 30(1): 50-64.
[12] 冉茂鹏, 王青, 董朝阳. 一种基于种群熵的动态搜索空间粒子群优化算法[C]//第26届中国控制与决策会议论文集, 2014: 4293-4297.
RAN M P, WANG Q, DONG C Y. A dynamic search space particle swarm optimization algorithm based on population entropy[C]//Proceedings of the 26th China Control and Decision Conference, 2014: 4293-4297.
[13] 李振华, 鲜勇, 雷刚, 等. 基于种群熵粒子群优化算法的上升段交会弹道优化设计[J]. 导弹与航天运载技术, 2015(6): 96-99.
LI Z H, XIAN Y, LEI G, et al. Launch vehicle ascent rendezvous trajectory optimum design based on population entropy based particle swarm optimization[J]. Missile and Space Launch Technology, 2015(6): 96-99.
[14] 刘洪达, 李德全, 王栋. 基于种群熵的变步长布谷鸟搜索算法[J]. 计算机仿真, 2022, 39(9): 370-376.
LIU H D, LI D Q, WANG D. Variable step-size cuckoo search based on population entropy[J]. Computer Simulation, 2022, 39(9): 370-376.
[15] 李晗珂, 游晓明, 刘升. 融合熵聚类和增广变邻策略的蚁群优化算法[J]. 计算机集成制造系统, 2024, 30(6): 2115-2129.
LI H K, YOU X M, LIU S. Ant colony optimization algorithm combining entropy clustering and augmented neighboring strategy[J]. Computer Integrated Manufacturing Systems, 2024, 30(6): 2115-2129.
[16] 陈杰, 蔡勇, 张建生. 基于熵准则遗传算法的点云配准算法[J]. 计算机应用研究, 2019, 36(1): 316-320.
CHEN J, CAI Y, ZHANG J S. Point cloud registration based on entropy criterion genetic algorithm[J]. Computer Application Research, 2019, 36 (1): 316-320.
[17] 封全喜, 金培源, 岑健铭, 等. 基于耦合协调种群状态评估的差分进化算法[J]. 模式识别与人工智能, 2023, 36(8): 733-748.
FENG Q X, JIN P Y, CEN J M, et al. Differential evolution algorithm based on coupling and coordinating population state assessment[J]. Pattern Recognition and Artificial Intelligence, 2023, 36 (8): 733-748.
[18] CAO Z, WANG L, HEI X. A global-best guided phase based optimization algorithm for scalable optimization problems and its application[J]. Journal of Computational Science, 2018, 25: 38-49.
[19] 刘海龙, 雷斌, 王菀莹. 求解TSP问题的改进融合遗传灰狼优化算法[J]. 计算机仿真, 2023, 40(9): 333-338.
LIU H L, LEI B, WANG W Y. Improved fused genetic grey wolf optimization algorithm for solving TSP[J]. Computer Simulation, 2023, 40(9): 333-338.
[20] MOHAPATRA P, NATH D K, ROY S. A modified competitive swarm optimizer for large scale optimization problems[J]. Applied Soft Computing, 2017, 59: 340-362.
[21] KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of the International Conference on Neural Networks, 1995: 1942-1948.
[22] TROJOVSK P, DEHGHANI M. Pelican optimization algorithm: a novel nature-inspired algorithm for engineering applications[J]. Sensors, 2022, 22(3): 855.
[23] BRAIK M, HAMMOURI A, ATWAN J, et al. White shark optimizer: a novel bio-inspired meta-heuristic algorithm for global optimization problems[J]. Knowledge-Based Systems, 2022, 243: 108457.
[24] SALLAM K M, ELSAYED S M, CHAKRABORTTY R K, et al. Improved multi-operator differential evolution algorithm for solving unconstrained problems[C]//Proceedings of the IEEE Congress on Evolutionary Computation, 2020: 1-8.
[25] ZHU G Y, ZHANG W B. Optimal foraging algorithm for global optimization[J]. Applied Soft Computing, 2017, 51: 294-313.
[26] MIRJALILI S, MIRJALILI S M, LEWIS A D. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61.
[27] 余伟伟, 谢承旺. 一种多策略混合的粒子群优化算法[J]. 计算机科学, 2018, 45(1): 120-123.
YU W W, XIE C W. Hybrid particle swarm optimization with multiply strategies[J]. Computer Science, 2018, 45 (1): 120-123.
[28] 乔学工, 王华倩, 曹建, 等. 基于人群搜索优化的无线传感器网络三点定位算法[J]. 控制与决策, 2017, 32(8): 1518-1522.
QIAO X G, WANG H Q, CAO J, et al. Three points localization algorithm based on seeker optimization algorithm for wireless sensor networks[J]. Control and Decision Making, 2017, 32(8): 1518-1522.
[29] 陈亚楠, 张牧. 无线传感器网络定位综述[J]. 电脑知识与技术, 2017, 13(34): 57-60.
CHEN Y N, ZHANG M. A review: wireless sensor network location[J]. Computer Knowledge and Technology, 2017, 13(34): 57-60.
[30] 陈志奎, 司威. 传感器网络的粒子群优化定位算法[J]. 通信技术, 2011, 44(1): 102-104.
CHEN Z K, SI W. Particle swarm optimization localization algorithm for wireless sensor networks[J]. Communications Technology, 2011, 44(1): 102-104.
[31] KULKARNI R V, FORSTER A, VENAYAGAMOORTHY G K. Computational intelligence in wireless sensor networks: a survey[J]. Communications Surveys & Tutorials, 2011, 13(1): 68-96.
[32] 王鑫雨. 无线传感器网络粒子群优化定位算法[D]. 无锡: 江南大学, 2014.
WANG X Y. Localization algorithm using particle swarm optimization in wireless sensor network[D]. Wuxi: Jiangnan University, 2014.
[33] 崔焕庆, 张娜, 罗汉江. 基于改进鸽群算法的无线传感器网络定位方法[J]. 传感技术学报, 2022, 35(3): 399-404.
CUI H Q, ZHANG N, LUO H J. Localization of wireless sensor network based on modified pigeon inspired optimization[J]. Chinese Journal of Sensors and Actuators, 2022, 35(3): 399-404. |