[1] PAWAR D, DHAGE S. Feature extraction methods for electroencephalography based brain-computer interface: a review[J]. IAENG International Journal of Computer Science, 2020, 47(3): 221649603.
[2] DJAMAL E C, ABDULLAH M Y, RENALDI F. Brain computer interface game controlling using fast fourier transform and learning vector quantization[J]. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 2017, 9(2/3/4/5): 71-74.
[3] KOUSARRIZI M R N, GHANBARI A R A, TESHNEHLAB M, et al. Feature extraction and classification of EEG signals using wavelet transform, SVM and artificial neural networks for brain computer interfaces[C]//Proceedings of the 2009 International Joint Conference on Bioinformatics, Systems Biology and Intelligent Computing, 2009: 352-355.
[4] RAMOSER H, MULLER-GERKING J, PFURTSCHELLER G. Optimal spatial filtering of single trial EEG during imagined hand movement[J]. IEEE Transactions on Rehabilitation Engineering, 2000, 8(4): 441-446.
[5] ANG K K, CHIN Z Y, WANG C C, et al. Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b[J]. Frontiers in Neuroscience, 2012, 6: 2908770.
[6] CHEN C Y, WU C W, LIN C T, et al. A novel classification method for motor imagery based on brain-computer interface[C]//Proceedings of the 2014 International Joint Conference on Neural Networks, 2014: 4099-4102.
[7] LAWHERN V J, SOLON A J, WAYTOWICH N R, et al. EEGNet: a compact convolutional network for EEG-based brain-computer interfaces[J]. Journal of Neural Engineering, 2016, 15(5): 1-17.
[8] SCHIRRMEISTER R T, SPRINGENBERG J T, FIEDERER L D J, et al. Deep learning with convolutional neural networks for EEG decoding and visualization[J]. Human Brain Mapping, 2017, 38(11): 5391-5420.
[9] ZHAO D, TANG F, SI B, et al. Learning joint space-time-frequency features for EEG decoding on small labeled data[J]. Neural Networks, 2019, 114: 67-77.
[10] LI Y, ZHANG X R, ZHANG B, et al. A channel-projection mixed-scale convolutional neural network for motor imagery EEG decoding[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27(6): 1170-1180.
[11] AMIN S U, ALSULAIMAN M, MUHAMMAD G, et al. Deep learning for EEG motor imagery classification based on multi-layer CNNs feature fusion[J]. Future Generation Computer Systems, 2019, 101: 542-554.
[12] INGOLFSSON T M, HERSCHE M, WANG X, et al. EEG-TCNet: an accurate temporal convolutional network for embedded motor-imagery brain-machine interfaces[C]//Proceedings of the 2020 IEEE International Conference on Systems, Man, and Cyber-Netics, 2020: 2958-2965.
[13] MUSALLAM Y K, ALFASSAM N I, MUHAMMAD G, et al. Electroencephalography-based motor imagery classification using temporal convolutional network fusion[J]. Biomedical Signal Processing and Control, 2021, 69: 102826.
[14] LUO T, ZHOU C, CHAO F. Exploring spatial-frequency-sequential relationships for motor imagery classification with recurrent neural network[J]. BMC Bioinformatics, 2018, 19(1): 1-18.
[15] OLIVAS-PADILLA B E, CHACON-MURGUIA M I. Classification of multiple motor imagery using deep convolutional neural networks and spatial filters[J]. Applied Soft Computing, 2019, 75: 461-472.
[16] TAYEB Z, FEDJAEV J, GHABOOSI N, et al. Validating deep neural networks for online decoding of motor imagery movements from EEG signals[J]. Sensors, 2019, 19(1): 5-9.
[17] LEE H K, CHOI Y S. Application of continuous wavelet transform and convolutional neural network in decoding motor imagery brain-computer interface[J]. Entropy, 2019, 21(12): 2-6.
[18] XU M, YAO J, ZHANG Z, et al. Learning EEG topographical representation for classification via convolutional neural network[J]. Pattern Recognition, 2020, 105: 107390.
[19] NIEPERT M, AHMED M, KUTZKOV K. Learning convolutional neural networks for graphs[C]//Proceedings of the International Conference on Machine Learning, 2016: 2014-2023.
[20] BRUNA J, ZAREMBA W, SZLAM A, et al. Spectral networks and locally connected networks on graphs[J]. arXiv:1312.6203, 2013.
[21] SONG T, ZHENG W, SONG P, et al. EEG emotion recognition using dynamical graph convolutional neural networks[J]. IEEE Transactions on Affective Computing, 2018, 11(3): 532-541.
[22] ZHANG T, WANG X, XU X, et al. GCB-Net: graph convolutional broad network and its application in emotion recognition[J]. IEEE Transactions on Affective Computing, 2019, 13(1): 379-388.
[23] WANG X, ZHANG T, XU X, et al. EEG emotion recognition using dynamical graph convolutional neural networks and broad learning system[C]//Proceedings of the 2018 IEEE International Conference on Bioinformatics and Biomedicine, 2018: 1240-1244.
[24] ZHANG D, CHEN K, JIAN D, et al. Motor imagery classification via temporal attention cues of graph embedded EEG signals[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 24(9): 2570-2579.
[25] LUN X, JIA S, HOU Y, et al. GCNs-NET: a graph convolutional neural network approach for decoding time-resolved EEG motor imagery signals[J]. arXiv:2006.08924, 2020.
[26] TANGERMANN M, MüLLER K R, AERTSEN A, et al. Review of the BCI competitionIV[J]. Frontiers in Neuroscience, 2012, 6: 3389.
[27] GLOROT X, BENGIO Y. Understanding the difficulty of training deep feedforward neural networks[C]//Proceedings of the 13th International Conference on Artificial Intelligence and Statistics, 2010: 249-256.
[28] YAO H, ZHU D, JIANG B, et al. Negative log likelihood ratio loss for deep neural network classification[C]//Proceedings of the Future Technologies Conference, 2019: 276-282.
[29] KINGMA D P, BA J. Adam: a method for stochastic optimization[J]. arXiv:1412.6980, 2014.
[30] DONG E, ZHOU K, TONG J, et al. A novel hybrid kernel function relevance vector machine for multi-task motor imagery EEG classification[J]. Biomedical Signal Processing and Control, 2020, 60: 101991.
[31] ZHANG Y, NAM C S, ZHOU G, et al. Temporally constrained sparse group spatial patterns for motor imagery BCI[J]. IEEE Transactions on Cybernetics, 2018, 49(9): 3322-3332.
[32] ZHAO X, ZHANG H, ZHU G, et al. A multi-branch 3D convolutional neural network for EEG-based motor imagery classification[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27(10): 2164-2177.
[33] LI D, XU J, WANG J, et al. A multi-scale fusion convolutional neural network based on attention mechanism for the visualization analysis of EEG signals decoding[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28(12): 2615-2626.
[34] HONG X, ZHENG Q, LIU L, et al. Dynamic joint domain adaptation network for motor imagery classification[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29: 556-565.
[35] LI Y, ZHONG N, TANIAR D, et al. Mutualgraphnet: a novel model for motor imagery classification[J]. arXiv:2109.04361, 2021.
[36] WANG H, YU H, WANG H. EEG_GENet: a feature-level graph embedding method for motor imagery classification based on EEG signals[J]. Biocybernetics and Biomedical Engineering, 2022, 42(3): 1023-1040.
[37] BASHIVAN P, RISH I, YEASIN M, et al. Learning representations from EEG with deep recurrent-convolutional neural networks[C]//Proceedings of the 4th International Conference on Learning Representations, 2016: 1-7.
[38] GRAMFORT A, LUESSI M, LARSON E, et al. MEG and EEG data analysis with MNE-Python[J]. Frontiers in Neuroscience, 2013, 7: 294183. |