Computer Engineering and Applications ›› 2024, Vol. 60 ›› Issue (9): 65-78.DOI: 10.3778/j.issn.1002-8331.2308-0127
• Research Hotspots and Reviews • Previous Articles Next Articles
YANG Chenxi, ZHUANG Xufei, CHEN Junnan, LI Heng
Online:
2024-05-01
Published:
2024-04-29
杨晨曦,庄旭菲,陈俊楠,李衡
YANG Chenxi, ZHUANG Xufei, CHEN Junnan, LI Heng. Review of Research on Bus Travel Trajectory Prediction Based on Deep Learning[J]. Computer Engineering and Applications, 2024, 60(9): 65-78.
杨晨曦, 庄旭菲, 陈俊楠, 李衡. 基于深度学习的公交行驶轨迹预测研究综述[J]. 计算机工程与应用, 2024, 60(9): 65-78.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2308-0127
[1] ZHU T, KONG X, LV W. Large-scale travel time prediction for urban arterial roads based on Kalman filter[C]//Proceedings of the 2009 International Conference on Computational Intelligence and Software Engineering, 2009: 1-5. [2] 柏梦婷, 林杨欣, 马萌, 等. 行程时间预测方法研究[J]. 软件学报, 2020, 31(12): 3753-3771. BAI M T, LIN Y X, MA M, et al. Survey of traffic travel-time prediction methods[J]. Journal of Software, 2020, 31(12): 3753-3771. [3] ABDI A, AMRIT C. A review of travel and arrival-time prediction methods on road networks: classification, challenges and opportunities[J]. Peerj Computer Science, 2021, 7: e689. [4] SINGH N, KUMAR K. A review of bus arrival time prediction using artificial intelligence[J]. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2022, 12(4): e1457. [5] SHAO K, WANG K, CHEN L, et al. Estimation of urban travel time with sparse traffic surveillance data[C]//Proceedings of the 4th High Performance Computing and Cluster Technologies Conference & 2020 3rd International Conference on Big Data and Artificial Intelligence, 2020: 218-223. [6] 王晰, 袁绍欣. 从车牌识别数据中提取有效旅行时间算法研究[J]. 计算机工程与应用, 2020, 56(16): 241-247. WANG X, YUAN S X. Algorithm for extracting valid travel time from automatic number plate recognition data[J]. Computer Engineering and Applications, 2020, 56(16): 241-247. [7] LIU Z, HUANG S, ZHONG S Y, et al. RFID E-plate data based bus travel time prediction considering traffic flow diversion rate[C]//Proceedings of the 2020 Chinese Control and Decision Conference (CCDC), 2020: 4994-4999. [8] WEPULANON P, SUMALEE A, LAM W H K. A real-time bus arrival time information system using crowdsourced smartphone data: a novel framework and simulation experiments[J]. Transportmetrica B: Transport Dynamics, 2018, 6(1): 34-53. [9] RAHMAN M M, WIRASINGHE S C, KATTAN L. Analysis of bus travel time distributions for varying horizons and real-time applications[J]. Transportation Research Part C: Emerging Technologies, 2018, 86: 453-466. [10] PENG Z, JIANG Y, YANG X, et al. Bus arrival time prediction based on PCA-GA-SVM[J]. Neural Network World Journal, 2018, 28(1): 87-104. [11] 谢智颖, 何原荣, 李清泉. 基于时空相关性的公交大数据清洗[J]. 计算机工程与应用, 2022, 58(1): 113-121. XIE Z Y, HE Y R, LI Q Q. Big data cleaning method for bus based on spatiotemporal correlation[J]. Computer Engineering and Applications, 2022, 58(1): 113-121. [12] ZHANG J, GU J, GUAN L, et al. Method of predicting bus arrival time based on MapReduce combining clustering with neural network[C]//Proceedings of the IEEE 2nd International Conference on Big Data Analysis, 2017: 296-302. [13] KHETARPAUL S, GUPTA S K, MALHOTRA S, et al. Bus arrival time prediction using a modified amalgamation of fuzzy clustering and neural network on spatio-temporal data[C]//Proceedings of the 26th Australasian Database Conference on Databases Theory and Applications, Melbourne, VIC, Australia, June 4-7, 2015: 142-154. [14] HE P L, JIANG G Y, LAM S K, et al. Learning heterogeneous traffic patterns for travel time prediction of bus journeys[J]. Information Sciences, 2020, 512: 1394-1406. [15] ALKILANE K, ALFATEH M T E, YANMING S. Travel time prediction based on route links’ similarity[J]. Neural Computing and Applications, 2023, 35(5): 3991-4007. [16] SCHMITT E J, JULA H. On the limitations of linear models in predicting travel times[C]//Proceedings of the 2007 IEEE Intelligent Transportation Systems Conference, 2007: 830-835. [17] CHUNG E H, SHALABY A. Expected time of arrival model for school bus transit using real-time global positioning system-based automatic vehicle location data[J]. Journal of Intelligent Transportation Systems, 2007, 11(4): 157-167. [18] GONG J, LIU M Y, ZHANG S. Hybrid dynamic prediction model of bus arrival time based on weighted of historical and real-time GPS data[C]//Proceedings of the 25th Chinese Control and Decision Conference (CCDC), 2013: 972-976. [19] ZHANG X Y, RICE J A. Short-term travel time prediction[J]. Transportation Research Part C: Emerging Technologies, 2003, 11(3/4): 187-210. [20] QI W W, WANG Y H, BIE Y, et al. Prediction model for bus inter-stop travel time considering the impacts of signalized intersections[J]. Transportmetrica A: Transport Science, 2021, 17(2): 171-189. [21] ZHANG H, LIANG S D, HAN Y, et al. A prediction model for bus arrival time at bus stop considering signal control and surrounding traffic flow[J]. IEEE Access, 2020, 8: 127672-127681. [22] REINHOUDT E M, VELASTIN S A. A dynamic predicting algorithm for estimating bus arrival time[J]. IFAC Proceedings Volumes, 1997, 30(8): 1225-1228. [23] VANAJAKSHI L, SUBRAMANIAN S C, SIVANANDAN R. Travel time prediction under heterogeneous traffic conditions using global positioning system data from buses[J]. IET Intelligent Transport Systems, 2009, 3(1): 1-9. [24] WANG B, WANG W, YANG M, et al. An approach to bus travel time prediction based on the adaptive fading Kalman filter algorithm[C]//Proceedings of the 12th COTA International Conference of Transportation Professionals, 2012: 1652-1661. [25] ACHAR A, NATARAJAN A, REGIKUMAR R, et al. Predicting public transit arrival: a nonlinear approach[J]. Transportation Research Part C: Emerging Technologies, 2022, 144: 103875. [26] PETERSEN N C, RODRIGUES F, PEREIRA F C. Multi-output bus travel time prediction with convolutional LSTM neural network[J]. Expert Systems with Applications, 2019, 120: 426-435. [27] ODA T. An algorithm for prediction of travel time using vehicle sensor data[C]//Proceedings of the 3rd International Conference on Road Traffic Control, 1994: 40-44. [28] GUIN A. Travel time prediction using a seasonal autoregressive integrated moving average time series model[C]//Proceedings of the 2006 IEEE Intelligent Transportation Systems Conference, 2006: 493-498. [29] XIANG G, DEYONG G, YUXUAN X. GA-ARIMA model-based analysis of arrival time at bus stop[C]//Proceedings of the 4th International Conference on Traffic Engineering and Transportation System, 21-23 August, 2020. [30] 任远, 吕永波, 马继辉, 等. 基于粒子滤波的公交车辆到站时间预测研究[J]. 交通运输系统工程与信息, 2016, 16(6): 142-146. REN Y, LYU Y B, MA J H, et al. Bus arrival time prediction based on particle filter[J]. Journal of Transportation Systems Engineering and Information Technology, 2016, 16(6): 142-146. [31] DHIVYABHARATHI B, KUMAR B A, VANAJAKSHI L. Real time bus arrival time prediction system under Indian traffic condition[C]//Proceedings of the 2016 IEEE International Conference on Intelligent Transportation Engineering, 2016: 18-22. [32] YU B, YANG Z Z, YAO B Z. Bus arrival time prediction using support vector machines[J]. Journal of Intelligent Transportation Systems, 2006, 10(4): 151-158. [33] YU B, YE T, TIAN X M, et al. Bus travel-time prediction with a forgetting factor[J]. Journal of Computing in Civil Engineering, 2014, 28(3): 06014002. [34] 柏丛, 彭仲仁. 基于动态模型的公交车行程时间预测[J]. 计算机工程与应用, 2016, 52(3): 103-107. BAI C, PENG Z R. Bus travel time prediction based on dynamic model[J]. Computer Engineering and Applications, 2016, 52(3): 103-107. [35] HASHI A O, HASHIM S Z M, ANWAR T, et al. A robust hybrid model based on Kalman-SVM for bus arrival time prediction[C]//Proceedings of the Emerging Trends in Intelligent Computing and Informatics: Data Science, Intelligent Information Systems and Smart Computing, 2020: 511-519. [36] CHEN M, YAW J, CHIEN S I, et al. Using automatic passenger counter data in bus arrival time prediction[J]. Journal of Advanced Transportation, 2007, 41(3): 267-283. [37] HUA X D, WANG W, WANG Y H, et al. Bus arrival time prediction using mixed multi-route arrival time data at previous stop[J]. Transport, 2018, 33(2): 543-554. [38] KEE C Y, WONG L P, KHADER A T, et al. Multi-label classification of estimated time of arrival with ensemble neural networks in bus transportation network[C]//Proceedings of the 2017 2nd IEEE International Conference on Intelligent Transportation Engineering, 2017: 150-154. [39] PANOVSKI D, ZAHARIA T. Long and short-term bus arrival time prediction with traffic density matrix[J]. IEEE Access, 2020, 8: 226267-226284. [40] NITHISHWER M A, KUMAR B A, VANAJAKSHI L. Deep learning-just data or domain related knowledge adds value?: bus travel time prediction as a case study[J]. Transportation Letters, 2022, 14(8): 863-873. [41] PALIWAL C, BIYANI P. To each route its own ETA: a generative modeling framework for ETA prediction[C]//Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference, 2019: 3076-3081. [42] 徐丸絮. 基于深度神经网络的公交行程时间预测[D]. 武汉: 华中科技大学, 2022. XU W X. Travel time prediction based on deep neural network[D]. Wuhan: Huazhong University of Science and Technology, 2022. [43] RAUT R D, GOYAL V K. Public transport bus arrival time prediction with seasonal and special emphasis on weather compensation changes using RNN[J]. International Journal of Advanced Research in Computer and Communication Engineering, 2012, 1(6): 378-382. [44] PANG J B, HUANG J, DU Y, et al. Learning to predict bus arrival time from heterogeneous measurements via recurrent neural network[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(9): 3283-3293. [45] 叶之放. 基于多源公交数据和LSTM的公交到站时间预测研究[D]. 广州: 华南理工大学, 2019. YE Z F. Bus-to-station time prediction based on multi-source bus data and LSTM[D]. Guangzhou: South China University of Technology, 2019. [46] AGAFONOV A A, YUMAGANOV A S. Bus arrival time prediction using recurrent neural network with LSTM architecture[J]. Optical Memory and Neural Networks, 2019, 28: 222-230. [47] HAN Q W, LIU K, ZENG L Q, et al. A bus arrival time prediction method based on position calibration and LSTM[J]. IEEE Access, 2020, 8: 42372-42383. [48] ZHOU T, WU W T, PENG L Q, et al. Evaluation of urban bus service reliability on variable time horizons using a hybrid deep learning method[J]. Reliability Engineering & System Safety, 2022, 217: 108090. [49] 安宇航, 马继辉, 刘慧勇, 等. 基于深度学习和粒子滤波的公交车到站时间预测[J]. 北京交通大学学报, 2022, 46(1): 88-97. AN Y H, MA J H, LIU H Y, et al. Prediction of bus arrival time based on deep learning and particle filter[J]. Journal of Beijing Jiaotong University, 2022, 46(1): 88-97. [50] 张兵, 周丹丹, 孙健, 等. 基于双向长短期记忆网络的公交到站时间预测模型[J]. 交通运输系统工程与信息, 2023, 23(2): 148-160. ZHANG B, ZHOU D D, SUN J, et al. Bus arrival time prediction model based on bidirectional long short-term memory network[J]. Journal of Transportation Systems Engineering and Information Technology, 2023, 23(2): 148-160. [51] 姚江涛, 邬群勇, 余丹青, 等. 基于行程数据的公交车到站时间预测[J]. 福州大学学报 (自然科学版), 2023, 51(3): 347-354. YAO J T, WU Q Y, YU D, et al. Bus arrival time prediction based on trip data[J]. Journal of Fuzhou University (Natural Science Edition), 2023, 51(3): 347-354. [52] ZHOU X, DONG P, XING J, et al. Learning dynamic factors to improve the accuracy of bus arrival time prediction via a recurrent neural network[J]. Future Internet, 2019, 11(12): 247. [53] 贺光焰. 基于MDARNN的多线路公交车出行时间预测研究[D]. 重庆: 重庆大学, 2021. HE G Y. Research on travel time prediction of multi-route bus based on MDARNN[D]. Chongqing: Chongqing University, 2021. [54] WU J Q, WU Q, SHEN J, et al. Towards attention-based convolutional long short-term memory for travel time prediction of bus journeys[J]. Sensors, 2020, 20(12): 3354. [55] 赖永炫, 张璐, 杨帆, 等. 基于时空相关属性模型的公交到站时间预测算法[J]. 软件学报, 2020, 31(3): 648-662. LAI Y X, ZHANG L, YANG F, et al. Bus arrival time prediction algorithm based on spatio-temporal correlation attribute model[J]. Journal of Software, 2020, 31(3): 648-662. [56] BHARATHI D, SOPE?A J M G, CLARKE S, et al. Travel time prediction utilizing hybrid deep learning models[J]. Transportation Research Record, 2023(1). [57] LIU Y, ZhANG H, JIA J, et al. Understanding urban bus travel time: Statistical analysis and a deep learning prediction[J]. International Journal of Modern Physics B, 2023, 37(4): 2350034. [58] JIANG R S, HU D W, SUN Q, et al. Predicting bus travel time with hybrid incomplete data-a deep learning approach[J]. Promet-Traffic & Transportation, 2022, 34(5): 673-685. [59] CHAWUTHAI R, AINTHONG N, INTARAWART S, et al. Travel time prediction on long-distance road segments in Thailand[J]. Applied Sciences, 2022, 12(11): 5681. [60] LEONG S H, LAM C T, NG B K. Bus arrival time prediction for short-distance bus stops with real-time online information[C]//Proceedings of the IEEE 21st International Conference on Communication Technology, 2021: 387-392. [61] XIE Z Y, HE Y R, CHEN C C, et al. Multistep prediction of bus arrival time with the recurrent neural network[J]. Mathematical Problems in Engineering, 2021(3): 1-14. [62] LIU H J, XU H Z, YAN Y, et al. Bus arrival time prediction based on LSTM and spatial-temporal feature vector[J]. IEEE Access, 2020, 8: 11917-11929. [63] YUAN Y, SHAO C F, CAO Z C, et al. Bus dynamic travel time prediction: Using a deep feature extraction framework based on rnn and dnn[J]. Electronics, 2020, 9(11): 1876. [64] LEE G, CHOO S, CHOI S, et al. Does the inclusion of spatio-temporal features improve bus travel time predictions? a deep learning-based modelling approach[J]. Sustainability, 2022, 14(12): 1-20. [65] 付丽萍. 基于深度学习的交通通行时间预测研究[D]. 青岛: 青岛大学, 2021. FU L P. Research on traffic travel time estimation based on deep learning[D]. Qingdao: Qingdao University, 2021. [66] MA J M, CHAN J, RAJASEGARAR S, et al. Multi-attention graph neural networks for city-wide bus travel time estimation using limited data[J]. Expert Systems with Applications, 2022, 202: 1-11. [67] LI C, LIN S, ZHANG H, et al. A sequence and network embedding method for bus arrival time prediction using GPS trajectory data only[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(5): 5024-5038. [68] WANG D, ZHANG J B, CAO W, et al. When will you arrive? estimating travel time based on deep neural networks[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence and 30th Innovative Applications of Artificial Intelligence Conference and 8th AAAI Symposium on Educational Advances in Artificial Intelligence, 2018: 2500-2507. [69] ZHANG K X, LAI Y X, JIANG L Y, et al. Bus travel-time prediction based on deep spatio-temporal model[C]//Proceedings of the 21st International Conference on Web Information Systems Engineering, Amsterdam, the Netherlands, October 20-24, 2020: 369-383. [70] YE J, ZHAO J, YE K, et al. How to build a graph-based deep learning architecture in traffic domain: a survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 23(5): 3904-3924. [71] 马禹婷. 基于机器学习的公交车到站时间预测模型研究[D]. 长春: 吉林大学, 2022. MA Y T. Research on prediction model of bus arrival time based on machine learning[D]. Changchun: Jilin University, 2022. |
[1] | CHE Yunlong, YUAN Liang, SUN Lihui. 3D Object Detection Based on Strong Semantic Key Point Sampling [J]. Computer Engineering and Applications, 2024, 60(9): 254-260. |
[2] | QIU Yunfei, WANG Yifan. Multi-Level 3D Point Cloud Completion with Dual-Branch Structure [J]. Computer Engineering and Applications, 2024, 60(9): 272-282. |
[3] | YE Bin, ZHU Xingshuai, YAO Kang, DING Shangshang, FU Weiwei. Binocular Depth Measurement Method for Desktop Interaction Scene [J]. Computer Engineering and Applications, 2024, 60(9): 283-291. |
[4] | WANG Cailing, YAN Jingjing, ZHANG Zhidong. Review on Human Action Recognition Methods Based on Multimodal Data [J]. Computer Engineering and Applications, 2024, 60(9): 1-18. |
[5] | LIAN Lu, TIAN Qichuan, TAN Run, ZHANG Xiaohang. Research Progress of Image Style Transfer Based on Neural Network [J]. Computer Engineering and Applications, 2024, 60(9): 30-47. |
[6] | SONG Jianping, WANG Yi, SUN Kaiwei, LIU Qilie. Short Text Classification Combined with Hyperbolic Graph Attention Networks and Labels [J]. Computer Engineering and Applications, 2024, 60(9): 188-195. |
[7] | ZHOU Dingwei, HU Jing, ZHANG Liangrui, DUAN Feiya. Collaborative Correction Technology of Label Omission in Dataset for Object Detection [J]. Computer Engineering and Applications, 2024, 60(8): 267-273. |
[8] | ZHOU Bojun, CHEN Zhiyu. Survey of Few-Shot Image Classification Based on Deep Meta-Learning [J]. Computer Engineering and Applications, 2024, 60(8): 1-15. |
[9] | SUN Shilei, LI Ming, LIU Jing, MA Jingang, CHEN Tianzhen. Research Progress on Deep Learning in Field of Diabetic Retinopathy Classification [J]. Computer Engineering and Applications, 2024, 60(8): 16-30. |
[10] | WANG Weitai, WANG Xiaoqiang, LI Leixiao, TAO Yihao, LIN Hao. Review of Construction and Applications of Spatio-Temporal Graph Neural Network in Traffic Flow Prediction [J]. Computer Engineering and Applications, 2024, 60(8): 31-45. |
[11] | XIE Weiyu, ZHANG Qiang. Review on Detection of Drones and Birds in Photoelectric Images Based on Deep Learning Convolutional Neural Network [J]. Computer Engineering and Applications, 2024, 60(8): 46-55. |
[12] | CHANG Xilong, LIANG Kun, LI Wentao. Review of Development of Deep Learning Optimizer [J]. Computer Engineering and Applications, 2024, 60(7): 1-12. |
[13] | ZHOU Yutong, MA Zhiqiang, XU Biqi, JIA Wenchao, LYU Kai, LIU Jia. Survey of Deep Learning-Based on Emotion Generation in Conversation [J]. Computer Engineering and Applications, 2024, 60(7): 13-25. |
[14] | JIANG Liang, ZHANG Cheng, WEI Dejian, CAO Hui, DU Yuzheng. Deep Learning in Aided Diagnosis of Osteoporosis [J]. Computer Engineering and Applications, 2024, 60(7): 26-40. |
[15] | LIU Jianhua, WANG Nan, BAI Mingchen. Progress of Instantiated Reality Augmentation Method for Smart Phone Indoor Scene Elements [J]. Computer Engineering and Applications, 2024, 60(7): 58-69. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||